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Honorary Lecture devoted to the memory of Professor Mikhail Slin’ko 

CHEMICAL REACTION AND REACTOR ENGINEERING:  
A KEY DISCIPLINE FOR PROCESS OPTIMIZATION, INNOVATION 

AND INTENSIFICATION 

Guy B. Marin 

Laboratory for Chemical Technology, Ghent University, Belgium 

This lecture will discuss  some possible contributions of chemical reaction and 

reactor engineering to the transformation of the process industry imposed by global 

warming. This adaptation will require more than incremental optimization of existing 

processes. It will also create opportunities for the introduction of disruptive 

techniques based on process intensification and alternative energy carriers as well 

as  alternative feedstocks.  

The focus will be on the production of ethylene, one of the major building blocks 

for the chemical industry. As of today it is produced in large scale units with an 

annual production capacity of 1 million ton each consisting of about 10 gas fired 

furnaces operated in parallel at 850 °C and upstream of a single separation train [1]. 

It contributes to almost 10 % of the CO2 emissions of the chemical industry. Hence, 

capture and utilization of so-called point emissions of CO2, so-called CCU, by the 

chemical  and other major industrial emitters like steel and cement industry, becomes 

very important in the context of climate change as long as no alternative carbon and 

energy sources have taken over. The former will, among other things, involve 

recycling of plastic waste [2] and renewable feedstocks [3, 4]. The latter will depend 

on the substitution of combustion of fossil fuels by green electricity as heat source [5] 

or, even better, of thermally driven processes by electrochemical ones [6].  

In parallel with discussing aspects of ethylene production and CCU, i.e. the 

application dimension of chemical reaction and reactor engineering, attention will be 

paid to its methodological dimension. Chemical kinetics constitute a key discipline for 

the chemical engineering profession. They not only provide quantitative relations 

between process input and output but even more importantly insight in the reaction 

mechanism underlying these relations. 

The tremendous progress made during the past decades in the field of 

computational chemistry and engineering has lead the profession away from the 

classical road from concept to industrial realization via the collection of a set of 
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experimental data at increasing length scales. There is the “automated” generation of 

reaction networks [7] with corresponding quantum-chemical based rate 

coefficients [8] and of catalyst properties [9]. Computational Fluid Dynamics (CFD) 

codes allow to combine the chemical kinetics with the scale-dependent physical 

transport phenomena and to provide a proof-of-concept before engaging into an 

experimental program [10-12]. However, experimental verification of such 

computational results remains a must for the decades to come. Finally there is a 

caveat: any theory starts from premises and, hence colors the insights it provides. 

So-called Machine Learning tools should allow to avoid this pitfall and will become, if 

not already so, part of the toolkit of the chemical reactor engineering community [13]. 

Fig. 1 summarizes the field with emphasis on the multi scale aspect but also 

indicating the interplay between its different parts. 

 

Figure 1. Chemical reaction and reactor engineering 
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PROCESS TECHNOLOGIES FOR ENERGY TRANSITION: 
PRODUCTION OF HYDROGEN AND CO2 CAPTURE,  

STORAGE AND UTILIZATION 

Roberto Zennaro 

Development & Technical Activity Eni - Energy Evolution, San Donato Milanese, Italy 

The European Commission through the “Green Deal” introduced new 

extraordinary objectives for the decarbonization of the European Union, with a target 

of net-zero emissions by 2050 and a midway 55 % reduction of emissions in 2030, 

related to 1990. Reaching net-zero emissions in the next thirty years represents a 

unique challenge for the global energy sector, which accounts for around three 

quarters of European greenhouse gas emissions today. This will involve every 

industrial sectors even the so-called hard-to-abate ones such as paper, ceramics, 

cement and concrete, and iron and steel.  

To this end the European energy transition and decarbonization program needs 

to mobilize a wide range of technical solutions to affordably secure the energy 

supply. While renewables, electrification and energy efficiency are clear and 

recognised contributors to decarbonization, it is uncertain and questionable whether 

they are sufficient to fulfil the EU ambitious target.  

The renewable and low-carbon hydrogen is the useful and clean energy vector 

mainly considered for the energy supply chain as feedstock for synthetic fuels, and 

industrial processes (high temperature heating). Renewable hydrogen (Green 

hydrogen) is produced from biomass or via electrolysis, powered by electricity from 

renewable sources, while low-carbon hydrogen (Blue hydrogen) is based on fossil 

fuels with low-emissions technologies like in the natural gas reformers integrated with 

carbon capture and sequestration facilities, CCS. Blue hydrogen is a flexible process 

likely available for large-scale production well before Green hydrogen could be and 

that can be the base load of the hydrogen market since Green hydrogen will not be 

available in substantial volumes until the power sector is fully decarbonised by 

renewable electricity, i.e. not before 2040, possibly 2050.  

Blue hydrogen has therefore gained the interest of government and industry, 

particularly in the UK area while in Eni we believe that hydrogen production 

technologies are complementary and not competing, and there is a need for a shared 

classification of hydrogen production technologies according to how much they can 



PL-2 

13 

contribute in reducing greenhouse gas emissions and there is room for developing 

technologies for producing sustainable hydrogen from waste products. 

Eni with more than 300 kton/a of hydrogen production capacity is one of the 

largest producers and consumers in Italy. To date, hydrogen has been used mainly 

as a feedstock in traditional refining processes, as well as for producing hydrotreated 

vegetable oil (HVO) biofuels in our biorefineries. Hydrogen is produced mainly by 

steam methane reforming (SMR), a technology widely adopted in the industry. 

As part of our commitment to de-carbonise our industry, Eni has recently joined 

the “Hydrogen Europe” association and the “European Clean Hydrogen Alliance”, 

being also one of 17 players from the energy sector who participated in the 

“Hydrogen for Europe” study, the aim of which was to assess how hydrogen can 

contribute to achieving climate neutrality on the continent. 

As part of Eni strategy, hydrogen sector has been identified as a great 

transformation opportunity and it is under evaluation the feasibility and potential of 

projects involving Green and Blue hydrogen, as well as the use of blue and green 

vectors (e.g. ammonia and methanol) for the transport of hydrogen with the aim of 

having a tangible possibility to decarbonize hard-to-abate production processes. 

As far as Blue hydrogen is concerned, the mandatory enabler for large capacity 

production is CCS which is a feasible and safe solution for decarbonization as it is 

based on consolidated technologies. As an energy company with an excellent 

upstream legacy, Eni has the know-how, the capabilities and the assets (in terms of 

depleted reservoirs and relevant infrastructures to be reused) to become an 

important player in this new born business which will offer CO2 transport and storage 

services to third parties as a cost-effective way to decarbonize their activities.  

This is what is going to happen through our CCS projects in Liverpool Bay (UK) 

and in Ravenna (IT) which will leverage on the competences gained in a first CCS 

demo plant in Ravenna expected to come in operation in 2023.  

A demonstration unit of our “e-sweet” CO2 capture technology, based on a 

proprietary solvent mixture, is also going to be tested in Ravenna in combination with 

a new demo unit of our CO2 utilization technology, “e-CCM” (Carbon Capture and 

Mineralization), able to accelerate a natural process that occur spontaneously to 

convert large quantities of CO2 in a mixture of stable, inert and not-toxic substances 

used in the cement manufacturing. 
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Furthermore, the proprietary natural gas catalytic partial oxidation technology to 

produce syngas or hydrogen called “k-Gas” is currently under development at 

demonstration scale in the Taranto (IT) refinery. 

In terms of Green hydrogen, two ongoing initiatives at demo scale (10 to 20 MW 

electrolyser’s capacity) are the results of a recent collaboration between Eni and Enel 

aiming at evaluating the technical and economic feasibility of the renewable 

hydrogen production for refining. These initiatives are IPCEI (Important Project of 

Common European Interest) pilot projects’ candidates.  

Green hydrogen is intrinsically linked to intermittent sources of renewable energy; 

therefore, the new green hydrogen economy requires large storage volumes of 

compressed gas. A chance is given by existing saline geological structures close to 

areas of potential production and consumption of blue and green hydrogen. An IPCEI 

pilot’s project has been proposed by Eni to study the entire value chain. 
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precursor has been successful in the preparation of extremely active low- and high-

temperature Fischer-Tropsch catalysts [9,10]. This changes the relative resistances 

in that process and new challenges arise to accommodate these systems, calling for 

structured reactors. Emerging technologies, like additive manufacturing/3D-printing 

offer new opportunities to meet these requirements. 
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Fausto Gallucci1,2 
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Technology (TU/e), Den Dolech 2, 5612AD, Eindhoven, The Netherlands 
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Process intensification can give a boost to the chemical industry in terms of 

improved energy efficiency and thus decreased emissions. Process Intensification 

(PI), is defined as “any chemical engineering development that leads to a 

substantially smaller, cleaner, safer and more energy efficient technology” [1], and is 

always referred to as the next revolution of the chemical industry.  

According to several reports, the benefits on applying PI for the chemistry sector 

would result in a potential for energy saving of about 1000 ktoe/y using these 

processes. 

PI is however a very broad field and, in many cases, it is just a new and nicer 

name for best practices that were already carried out in chemical industries. 

However, real PI is not just about debottlenecking processes already working at 

industrial level, but rather strategies that can open new process windows not 

available with conventional systems. 

Several authors have reported reviews and books on process intensification, and 

an interested reader is referred to these works for more information [2–4] 

The most interesting 

concepts can be summarized 

in the Figure 1 (as already 

reported by several authors). 

The strategies adopted are 

divided in 4 categories, where 

the PI will be achieved either in 

one or more of these domains.  

One interesting strategy is 

achieved in the synergy 

domains, where functions are integrated in single units. Generally, the functions 

Figure 1. Summary of the process intensification strategies 
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integrated are reaction and separation or reaction and heat management. The 

integration of functions promises to decrease the capital costs and operating costs 

compared to typical systems where these functions are separated. 

Novel concepts are the membrane reactor concept, in which membrane 

separation is integrated with reaction, and separation enhanced reactors in which the 

separation is obtained with means different than membranes (like sorbents).  

This lecture will summarize the recent advances in separation enhanced reactors, 

with large emphasis on membrane reactors.  
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Annemie Bogaerts 
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Plasma technology is gaining increasing interest for various gas conversion 

applications, such as CO2 and CH4 conversion into value-added compounds, and N2 

fixation for fertilizer applications [1-4], i.e., more in general: green chemistry.  

Plasma is a (partially) ionized gas, created by applying electricity. It consists of 

electrons, various ions, radicals, excited species, besides neutral gas molecules. The 

electrons are mainly heated by the applied electric field, due to their small mass, and 

they activate the gas molecules by electron impact ionization, excitation and 

dissociation, creating new ions, excited species and radicals. These are very 

reactive, so they can easily produce new products. Hence, thermodynamically or 

kinetically limited reactions can proceed at mild conditions of gas temperature and 

pressure, because the gas activation is accomplished by the electrons. Typically, 

plasma reactors operate at atmospheric pressure and the gas is introduced at room 

temperature. Plasma technology has low CAPEX costs. Finally, the plasma reactors 

can quickly be switched on/off, and because they operate with electricity, they are 

very suitable to be combined with (fluctuating) renewable electricity, for electrification 

of chemical reactions.  

To improve this application in terms of conversion, energy efficiency and product 

formation, a good insight in the underlying mechanisms is desirable. We try to obtain 

this by computer modelling, supported by experiments.  

I will first give a brief explanation about different types of plasma reactors used for 

gas conversion / green chemistry applications. That will be followed by an overview of 

the state of the art in plasma-based CO2 and CH4 conversion, as well as N2 fixation, 

with these different types of plasma reactors, and briefly discuss the opportunities and 

main challenges.  

Subsequently, I will present some recent results obtained in Antwerp in this domain, 

including experiments and modeling for a better understanding of the underlying 

mechanisms. This includes modeling the plasma chemistry as well as the reactor 

design, in the different types of plasma reactors commonly used for gas conversion, 

i.e., dielectric barrier discharges (DBDs), gliding arc (GA) discharges, microwave 

(MW) plasmas and atmospheric pressure glow discharges (APGDs). For the plasma 
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reactor design, we use 2D or 3D computational fluid dynamics modelling [5,6]. For 

the plasma chemistry, we make use of zero-dimensional chemical kinetics modeling, 

which solves continuity equations for the various plasma species, based on 

production and loss terms, as defined by the chemical reactions [7]. By means of 

particle tracing simulations, we follow the molecule trajectories through the reactor, 

which allows us to define which power density and gas temperature profile they 

experience when travelling through the reactor. This is used as input in the chemical 

kinetics modelling. Indeed, the latter solves the continuity equations as a function of 

time, like in a batch reactor, but this can be translated to a spatial dependence, by 

means of the gas velocity (as obtained from the fluid dynamics simulations). Hence 

we describe the plasma reactors as a plug flow reactor, calling it a quasi-1D model. 

Plasma is a very reactive medium, producing a lot of different species, but it is not 

so selective. To enhance the selectivity, a catalyst can be integrated, either inside or 

after the plasma (depending on the plasma type), yielding plasma catalysis [8]. This 

often leads to synergy, where the combined process is better that the sum of both 

individual processes. We also perform modelling to better understand the underlying 

mechanisms of plasma catalysis. This includes particle-in-cell – Monte Carlo collision 

simulations and computational fluid dynamics modelling to understand how plasma 

streamers propagate through a packed bed plasma reactor [or whether plasma can 

penetrate into catalyst pores [9], as well as microkinetic modelling for the chemistry 

at the catalyst surface [10-12]. Also these modelling results will be illustrated. 
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CONVERSION OF SUSTAINABLE ENERGY: ELECTRIFIED 
REACTORS 

Ib Chorkendorff 

Department of Physics, Technical University of Denmark 
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In a future fossil free scenario our energy will come in the form of electricity 

mainly from windmills and photo voltaic devices. This means the energy resources 

are intermittent and although they can be determined a few days ahead fast 

adjustment to changes of energy availability will be necessary. This electrification will 

first of all led to a substantial energy saving as electricity is a much more efficient 

energy source due to its high exergy. Nevertheless, not everything can be electrified 

and there will be a demand for making fuels for for example long haul transport and 

in particular for aviation. Similarly, will there still be a demand for chemicals. Entirely 

new processes are now being investigated for electrifying our chemical industry like 

utilizing electrocatalysis. The main obstacles in electrocatalysis for first splitting water 

and subsequently hydrogenate CO2 and N2 have been identified [1], albeit far from 

solved. On a shorter timescale we also need to implement the electricity and replace 

the fossil resources for for example endothermic reactions. This has not been given 

much attention until recently, since generating electricity in the conventional manner 

inflict a 2,5 times higher energy use of fossil resources.  

Two approaches shall be discussed where, in both cases, the energy source can 

be brought in close proximity with the catalysts avoiding strong temperature 

gradients. Large temperature gradients are well-known to cause long startup times 

and problems such as carbon deposition on the catalysts in conventional reactors as 

well as metal dusting. 

In the first case of close proximity of heat source and catalysts we shall discuss 

the simple method of Ohmic heating and the advantages it may have on the size of 

the overall reactor and amount of catalysts for one of the most demanding 

endothermic reaction namely the steam reforming [2]. Here of dynamics [3] and the 

issues of fast startup and carbon potential shall be discussed in detail [4]. In the 

second approach we use inductive heating and here the challenge is to get a 

sufficient efficient and catalytically inert susceptor at high temperatures. Is shall be 

illustrated how this can be done again for the most demanding reaction, the steam 
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reforming process using NiCo alloys nanoparticles [5]. Finally approaches for 

developing a generic inert susceptor for induction heating shall also be discussed if 

time allows. 

References 

[1] Z. W Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov and T.F. Jaramillo, 
“Combining Theory and Experiment in Electrocatalysis: A Framework for Providing Insights into 
Materials Design” SCIENCE 2017 355 146-158. 

[2] S.T. Wismann, J.S. Engbæk, S. Vendelbo, F.B. Bendixen, W.L. Eriksen, K. Aasberg-Peteresen, 
C. Frandsen, I. Chorkendorff and P.M. Mortensen, “Miniaturized mega-scale: A disruptive 
approach for greener hydrogen production at industrial scale”, SCIENCE 2019 364-756.  

[3] S.T. Wismann, J.S. Engbæk, S.B. Vendelbo, W.L. Eriksen, C. Frandsen, P.M. Mortensen and  
I. Chorkendorff,” Electrified methane reforming: Understanding the dynamic interplay” Industrial & 
Engineering Chemistry Research. 2019 58 23380-23388. 

[4] S.T. Wismann, J.S. Engbæk, S.B. Vendelbo, W.L. Eriksen, C. Frandsen1, P.M. Mortensen,  
I. Chorkendorff, “Electrified methane reforming: Elucidating transient phenomena” Submitted 
2021. 

[5] M.R. Almind, M.G. Vinum, S.T. Wismann, M.F. Hansen, S.B. Vendelbo, J.S. Engbæk,  
P.M. Mortensen, I. Chorkendorff, C. Frandsen, “Tunability of CoNi Nanoparticle Composition for 
Optimal and Curie-temperature-controlled Induction-heated Catalysis”, Submitted 2021. 

Acknowledgements 

This work was supported by Innovation Fund Denmark (IFD) under file no. 5160-00004B and 
research grant 9455 from Villum Fonden.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

KEYNOTE LECTURES 



 



KL-1 

25 

ADDITIVE MANUFACTURING OF TAILOR-MADE 
CATALYTIC REACTORS WITH OPTIMAL AND FLEXIBLE 

TRANSPORT PROPERTIES 

Hannsjörg Freund 

Chair of Reaction Engineering and Catalysis 
TU Dortmund University, Dortmund, Germany 

An intelligent matching of reaction and transport processes is key to the design 

and operation of optimal catalytic reactors. For the realization of optimal reaction and 

process conditions, the system specific requirements regarding heat and mass 

transport characteristics demand for suitable catalyst support materials and reactor 

geometries. In this regard, additive manufacturing techniques have emerged as 

enabling technology, which unlocks a new degree of freedom in the design of 

structured reactors with tailored properties. Additive manufacturing allows for the 

fabrication of open cellular structures of nearly arbitrary geometrical complexity, and 

this in a well-defined and highly reproducible manner. 

In our work, we study periodic open cellular structures (POCS) that were 

manufactured by selective electron beam melting. POCS are promising novel 

catalyst supports as they offer clear advantages over conventional randomly packed 

fixed-bed reactors in terms of pressure drop [1-4] and heat management [5-8] as well 

as liquid distribution in multiphase applications [3, 9-10]. In fact, POCS combine the 

advantages of randomly packed beds (radial mixing, tortuosity of the flow) and 

honeycombs (high geometric specific surface area, low pressure drop) owing to their 

high porosities and their characteristic 3D cellular architecture. 

Based on extensive experimental investigations as well as modeling and 

simulation, correlations for specific surface area, pressure drop and heat transport for 

POCS were established. With these models, the design and optimization of POCS 

that are tailor-made according to the needs of the reaction system is possible. In our 

work, such tailor-made POCS were manufactured, functionalized by catalytic coating, 

and then applied in different catalytic reaction systems with focus on the optimization 

of heat transport (for highly exothermic gas phase reactions) and gas-liquid 

distribution (in trickle-bed reactors), respectively. 

To achieve even more flexibility with regard to transport characteristics, we have 

recently proposed a new type of interpenetrating POCS (interPOCS) which are 
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The conversion of biomass to renewable chemicals and fuels requires new 

approaches to catalyst and reactor design due to the complexity of molecules and 

pathways produced in nature [1]. In this work, we consider the breadth of 

hydrogenation, dehydration, and dehydrogenation chemistries common to renewable 

chemistry and evaluate alternative strategies for catalyst and reactor design. These 

important reactions have commonalities associated with their chemical energy 

diagrams; selection of the most active catalysts balance rate-limiting surface 

phenomena. Similarly, the most selective catalysts are often unique structures (e.g., 

phosphorous-containing zeosils [1]) that carefully inhibit undesired pathways. 

The limit of catalyst/reactor design for renewable energy and bio-derived 

chemicals derives from the static nature of inorganic active site structures. Immobile 

active sites are designed as a compromise between both: (a) elementary steps in a 

single reaction, and (b) parallel and/or series competing reactions. For example, ring-

opening dehydration of tetrahydrofuran to renewable butadiene balances elementary 

steps of ether scission and dehydration, while the active site must simultaneously 

suppress retro-Prins condensation to propylene [1]. These extensive demands of a 

single static active site result in inherent limits of catalytic performance, frequently 

with poor activity at the expense of improved selectivity. 

In this work, we examine the catalytic potential of dynamically oscillating catalytic 

active sites for renewable energy and bio-derived chemicals. Active sites that vary in 

electronic or physical structure near the time scale of a reaction turnover can achieve 

overall reaction rates in excess of the Sabatier maximum [2]. Catalytic performance 

is dependent on design of new reactor and catalyst parameters, including the 

frequency at which the catalyst changes with time, the shape of the catalyst 

oscillation waveform, and the overall amplitude of varying in catalyst electronic and/or 
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physical structure.  Broad consideration of these dynamic parameters in combination 

with varied examination of the reaction chemistry parameters (e.g., BEP parameters) 

common to the breadth of renewable chemistry indicate that dynamic rate 

enhancement can be achieved for most catalytic systems [3]. 

In more complicated systems with parallel reaction pathways common to 

renewable energy systems, dynamic oscillating catalysts have the potential to more 

selectively suppress undesired side reactions [4]. The ability to select catalyst 

material & binding site in addition to dynamic parameters (e.g. frequency, amplitude), 

it becomes possible to radically accelerate the desired reaction over the undesired 

side chemistry, such that overall main pathway selectivity is significantly enhanced. 

In these complex reaction networks, transitions between pathway selection are 

demarcated by distinct changes in parameter space, making it possible to tune 

complex reaction networks for both activity and selectivity control. This strategy 

provides a new opportunity for implementing renewable energy catalysis and 

reactors for bio-derived chemicals. 
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The leading technological area of the twentieth century, which defined the face of 

modern society, was petrochemistry. The relative simplicity of destructive processes 

of oil refining (cracking, pyrolysis, dehydrogenation, isomerization) makes it possible 

to widely use equilibrium catalytic processes. But the oil resources in the earth's crust 

are limited. Huge resources of unconventional natural gas, especially gas hydrates, 

can provide the world economy with hydrocarbons for centuries. So the XXI century 

will inevitably become the century of natural gas and gas chemistry – petrochemistry 

based on methane. Gas chemistry fundamentally differs from traditional 

petrochemistry by "constructive" direction of its processes. Its goal is to obtain from 

the simplest and most stable hydrocarbon molecule CH4 a wide variety of more 

complex (and less stable) products of modern petrochemistry.  

Modern gas chemical technologies can be divided into two main groups: direct 

processes of methane conversion into chemical products and indirect processes 

based on its preliminary conversion into syngas. If we do not consider the relatively 

low-tonnage processes of halogenation and sulfidation of methane, the range of 

products that can be obtained directly from it is quite limited. These are hydrogen, 

carbon black (soot), acetylene, ethylene and simple oxygenates (methanol, 

formaldehyde). The conversion of methane into syngas makes it possible to obtain 

from it in the Fischer-Tropsch process synthetic oil, and therefore all petrochemical 

products. The uniqueness of syngas for gas chemistry is that it is practically the only 

product into which methane can be converted completely and in a thermodynamically 

equilibrium process. But it requires very high temperatures, up to 1000 °C, and 

therefore a lot of energy, making autothermal gas chemical processes particularly 

attractive. Existing industrial technologies of chemical conversion of natural gas are 

overwhelmingly based on its preliminary conversion into syngas. This complex, 

energy-and capital-intensive process absorb up to 70 % of the cost of the target 

products. Specific capital expenditures in existing gas chemistry are much higher 
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than in petrochemistry, which hinders its development. The use of vast 

unconventional methane resources requires the creation of new cost-effective 

technologies for their extraction, transportation and chemical processing.  

The report analyzes a number of fundamentally new gas chemical technologies, 

both direct and indirect, which have been developed recently [1-5]. Among them are 

such direct methods as Direct Methane To Methanol (DMTM), selective oxycracking 

of heavier hydrocarbons in wet natural and associated petroleum gases to obtain 

condition gas motor fuel, an alternative conception of GTL processes based on the 

partial oxidation and selective oxycracking of natural gas with subsequent catalytic 

carbonylation and oligomerization of products, and conjugated oxidative conversion 

of saturated and unsaturated hydrocarbons to light olefins. However, the most 

promising and universal technology of processing hydrocarbon gases of almost any 

composition and origin can be their non-catalytic matrix conversion into syngas [5]. It 

is a simple and compact technology based on the partial oxidation of hydrocarbon 

gases by air, enriched air or oxygen. Its specific volumetric capacity is at least an 

order of magnitude higher than that of steam reforming. The method allows obtaining 

both nitrogen-free syngas for traditional processes of methanol and Fischer-Tropsch 

products synthesis, and cheap nitrogen-containing syngas for low-tonnage processes 

of field conversion of natural gas into liquid products.  

The influence of composition of hydrocarbon and hydrocarbon-hydrogen fuels on 

their motor characteristics, requirements to properties and composition of gas motor 

fuel and effective methods of converting wet natural and associated petroleum gases 

into conditioned fuel for power and electricity production are also considered.  
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In this lecture, we will present an overview of the status of water electrolysis, the 

hydrogen production technology that is called to be one of the pillars of the future 

energy system. Reasons of the renewed interest on it include [1]: 

 Continuous decline of the renewable electricity costs 

 Possible integration with some of the most widely deployed renewables 

(mainly solar photovoltaics and wind) 

 Its maturity, commercial availability, and reasonably high energy efficiency 

 Its modularity and the possibility of building electrolysis plants capable of 

reaching the very high sizes that are expected to be required in the near future 

The widespread use of electricity produced from renewable energy sources is the 

most effective way to decarbonize our economy. However, not all economic sectors 

are easily electrifiable. In addition, the intermittent nature of most of the renewable 

resources leads to the necessity of being able to store electricity when generation 

exceeds the demand. Simultaneously, time is required until the electric grid capacity 

and management strategies are sufficiently developed to be capable of absorbing the 

huge amounts of renewable electricity required to achieve our climatic neutrality 

objectives. Within this context, H2 is reaching a new peak of interest to the extent of 

being considered a key priority by current policies aiming a clean energy transition 

[2]. Indeed H2 is a good complement to batteries because, in addition to its energy 

storage capacity, it is also an energy carrier, a fuel, and feedstock having many 

possible applications in a variety of industrial and services sectors. 
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We should not lose sight of the fact that H2 is being already produced in big 

amounts reaching 70 Mt/year that are consumed in oil refining (55 %) and ammonia 

synthesis (45 %). There is an additional demand of 45 Mt/year of H2 as part of gas 

mixtures, such as e.g. syngas used in the synthesis of methanol and the steel industry 

[3]. Almost all this H2 is being produced from fossil resources, mainly natural gas and 

coal. Low-carbon fossil-based production including carbon capture and storage (CCS) 

technologies is marginal. Water electrolysis is limited to 2 % of the global production, 

that is used in specific applications requiring high purities. These figures show the 

enormous efforts that should be devoted in order that renewable H2 can play a relevant 

role in the energy mix. This challenge needs strong commitments by the public and 

private sectors to guarantee a favorable regulatory framework and sufficient capital 

investments. In this regard, the European Union has established a strategy aiming at 

H2 being part of the energy system by 2030 with an installed capacity of 40 GW of 

water electrolysis and the production of 10 Mt of renewable H2 [2]. 

One of the keystones of this strategy is that the development of a full value chain 

is necessary to succeed on building up a H2 economy. It is within this value chain 

where the Power-to-X (P2X) processes emerge half way between the transport-

distribution and end use steps. P2X processes consist is using H2 obtained through 

water electrolysis fed with renewable energy to produce methane (Power-to-gas, 

PtG), fuel-range liquid hydrocarbons such as gasoline, kerosene, and diesel (Power-

to-liquids, PtL) or methanol (Power-to-methanol, PtM). P2X products are expected to 

diversify H2 applications facilitating its deployment and the penetration of renewables 

in sectors that are difficult to electrify such as aviation and shipping. Obviously, P2X 

processes require a carbon source whose origin will critically affect their 

environmental impact. Renewable CO2 coming from biomass and organic wastes 

fermentation or gasification would lead to carbon-neutral products. CO2 stemming 

from direct air capture (DAC) can become an option if the costs of the technique 

evolve favorably. 

Water electrolysis is the chemical reaction that makes possible the production of 

H2 (and O2) from electricity. Water electrolyzers have been commercialized for long 

time. Currently, water electrolysis plants are available at the multi-megawatt (MW) 

scale. Two main technologies exist that are distinguished by the way in which ionic 

transport takes place [1]. The most mature technology is alkaline electrolysis in which 

the charge carriers are hydroxyde anions (OH–) flowing from the cathode, where they 
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are formed through water splitting accompanied by H2 production, to the anode 

where they recombine releasing O2. Transport takes place under the driving force of 

the electric field established by the external power source through an inorganic 

membrane impregnated with an alkaline water solution, typically of highly 

concentrated KOH. Proton exchange membrane (PEM) electrolyzers begun to be 

commercialized in the late 1970s. In this case, water decomposes at the anode 

surface where O2 and protons (H+) are formed. These positive charge carriers flow 

through an acid polymeric membrane from the anode to the cathode where they are 

reduced forming H2. It is worth mentioning that electrolyzers operate with direct 

current, and that they consume deionized water to prevent electrode degradation and 

safety issues; therefore, the electrolysis plant should include power converters and 

water treatment facilities. 

Both technologies have advantages and disadvantages, as will be discussed in 

this lecture under the perspective of a non-stationary operation and the benefits of 

obtaining pressurized H2 in view of its storage and transport, and eventual use in the 

synthesis reactions involved in the P2X processes. Mention will be also made to two 

additional technologies: anion exchange membrane electrolysis and solid oxide 

electrolyzers. Though still not commercially available to form part of large electrolysis 

plants, both have good perspectives for playing an increasingly important role. 
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Reactive crystallization in a flow is one of the intensively developing areas of 
chemical technologies, as evidenced by the growing number of research articles and 
reviews. The aim of this work is to formulate, on the basis of the theory of 
aggregative nucleation, the concept of controlled solution synthesis.  

The processes of physicochemical design and synthesis of materials have a 
hierarchical organization. In this case, the functional properties of materials are 
formed at different scale levels – from the levels of the isotopic, elemental, chemical, 
phase composition to the levels responsible for nano and micro scale interactions of 
matter in reaction media.  

With the correct organization of the process, when energy is transferred from the 
milli or micro scale, which are the closest to the nanoscale, it is possible to form 
nanoparticles with high quality parameters. In this case, the micro scale should be as 
close as possible to the nanoscale in order to exclude unnecessary energy 
transformations when going from a larger scale to a smaller one (see the diagram in 
Fig. 1). Premixing, implemented in micro and milli scale devices, may not be too 
intense, and its goals are: 1) uniform distribution of ions (atoms, molecules) and their 
derivatives (like cation hydrates) in the volume of the solution; 2) the formation of 
clusters of subcritical size. 

(a) 

macro  
scale 
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impact on 
solutions 

energy 
dissipation 
(decay into 
meso- and 
microscale 
vortices) 

intensive production 
of entropy (large 
energy losses) 

stochastic processes 
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and micro levels 

particle formation 
processes at  

the nanoscale 
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microscale 
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the solutions 
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stochastic 
processes  

at milli- and 
microlevels 
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(minor energy 

losses) 
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processes at the 
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Fig. 1. Scheme of conversion of kinetic energy introduced into the solution:  

a – during the transition from macro scale to nanoscale (traditional approach);  
b – during the transition from milli and micro scale impacts to nanoscale (proposed approach) 
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A dependence of the segregation index Xs on the magnetic stirrer rotation 

frequency n in a laboratory reactor with a solution volume of 250 ml was found, which 

is constant Xs  0.52  0.03 and quite high (at Xs = 1 the complete segregation takes 

place). The non-uniformity of concentrations is demonstrated also for the stirred tank 

with turbine, and even for the lab scale autoclave. 

The stages of the aggregative nucleation in the frame of the energy 

transformation and transfer processes are distinguished as follows:  

1) Uniform distribution of ions (atoms, molecules) in the volume of the solution;  

2) Formation of clusters of subcritical size;  

3) Formation of nuclei from clusters (aggregation);  

4) Growth of nuclei;  

5) Restriction of particle growth (preventing further aggregation and 

agglomeration). 

The ideology of the effective design of microreactors, i.e. having good 

micromixing features and other properties listed above was developed. The 

advantages and limitations of various types of microreactors elaborated for the 

nanosized particles synthesis (Microreactor with free impinging jets, Microreactor 

with swirled flows, Microreactor with impinging swirled flows, Microreactor with 

pulsating flow type apparatus, etc.) are discussed. Several examples of successful 

applications of microreactors for oxides and fluorides nanoparticles synthesis are 

demonstrated. 
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APPARENT ACTIVATION ENERGY OF STRUCTURE SENSITIVE 
HETEROGENEOUS CATALYTIC REACTIONS  

Dmitry Yu. Murzin 
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Apparent activation energy is analyzed for different structure sensitive multistep 

heterogeneous catalytic reactions [1, 2]. In the case of kinetic coupling between 

catalytic cycles the activation energy in a particular route was shown to depend not 

only on the activation energies of the elementary steps comprising this route, but also 

on the frequency of the steps in a parallel route.  

As an example in a mechanism 

1. Z + A → ZI 

2. ZI + D2 → Z + B + W (1) 

3. ZI + D2 → Z + C + W 

A + D2 → B + W; A + D2 → C + W 

where D2 is a reactant (e.g. dihydrogen or dioxygen), B and C are products, W is also 

a (optional) product (e.g. water in an oxidation reaction), the apparent activation 

energy along the routes are 

 

1 2
a,app, B +1 +2 +1 2

1 2 3 1 2 3

2 3 1 3
+1 2
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E E E  (3) 

where 1 , etc. are the frequencies of steps. Eq. (2) and (3) illustrate coupling 

between the cycles, when the activation energy in a particular route depends on the 

contribution of a parallel route. 

Expressions were derived for coupling between routes through irreversible 

adsorption of the substrate, quasi-equilibrated binding as well as different substrate 

adsorption modes.  

Theoretical analysis of the apparent activation energy was extended for the 

reaction network with two routes possessing mechanistically different rate 

determining steps (i.e. monomolecular vs bimolecular). For structure sensitive 
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reactions an expression for the apparent activation energy for parallel reactions was 

developed for cases with a continuous distribution of active centers and a cubo-

octahedral representation of the metal clusters  
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A comparison between the theoretical analysis and experimental data [3] on 

transformations of furfural to furfuryl alcohol and furan on ruthenium clusters  

(Figure 1) shows applicability of the developed theoretical framework.  

 
Figure 1. Influence of the particle size on productivity and apparent activation energy for furfural 

hydrogenation to furfuryl alcohol and decarboxylation of furan. Comparison between experimental 
data (taken from [2] at 10 bar of hydrogen and 100-165 °C for silica supported Ru catalysts) and 

calculations 
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INCLUSION OF kMC INTO MACROSCOPIC REACTOR MODELS BY 
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The inclusion of first-principles calculation based kinetic scheme, e.g. kinetic 
Monte Carlo (kMC), into numerical simulations at the reactor scale is a topic of 
primary importance. A direct coupling between computational fluid dynamics (CFD) 
and kMC simulations, required to evaluate the turnover frequency (TOF), is 
impractical due to the large computational cost related to the solution of the kMC 
system. Interpolation methods, such as spline, have been proposed to approximate 
the solution of the kMC models, but their applicability is confined to kinetic system 
characterized by a few of species [1]. To overcome such a limitation, machine 
learning techniques (ML), such as random forest or extremely randomized trees, are 
an effective method to deal with schemes of higher complexity (e.g. number of 
species) [2]. These methodologies enable the coupling of 1p-kinetic model within 
reactors model through ensemble learning and regression of an existing dataset, 
providing a accurate approximation of complex functions, such as the kMC-TOF. 
However, the generation of the training set is key to guarantee accuracy of the 
methodology and might become the bottleneck of the procedure due to the large 
number of simulations required to build the dataset. In this view, we propose an 
effective way to generate the training dataset by an iterative procedure aiming at the 
minimization of the number of data points required to achieve an accurate description 
of the TOF function. The procedure selectively adds data points within the multi-
dimensional space in the regions where the approximation of the function is more 
demanding. An evenly distributed dataset is initially generated and the corresponding 
TOFs are calculated. In the next iterations, additional are added in the region of the 
composition space where the gradient of the function to be approximated is steeper. 
The datapoints are employed to train a ML method, such as an extra-tree regressor, 
which provides information on the prediction accuracy and perform internal cross-
validation. The procedure terminates the target function is well approximated by the 
ML method.  

First, the performances of the design procedure of the training data is evaluated 
with a Water Gas Shift (WGS) on Rh scheme [4]. The system depends from 5 
variable (i.e., molecular species and temperature). An initial evenly distributed grid 
with 3 points for variable is employed. At each iteration, additional points are added 
until the approximation is sufficiently accurate. To quantitively assess the 
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UNRAVELING THE NATURE AND THE IDENTITY OF THE ACTIVE 
SITES IN HETEROGENEOUS CATALYSIS VIA STRUCTURE-

DEPENDENT MICROKINETIC MODELING 

Raffaele Cheula, Matteo Maestri 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, Via La Masa, 34, 20156, Milano, Italy 

matteo.maestri@polimi.it 

There is no doubt that the rational interpretation of the structure-activity relation in 

catalysis is a crucial task in the quest of engineering the chemical transformation at 

the molecular level [1]. In this respect, multiscale analyses based on structure-

dependent microkinetic modeling is acknowledged to be an essential key-tool to 

achieve a mechanistic understanding of the catalyst functionality. However, the effect 

of the structure of the catalyst on reactivity and selectivity is at present neglected in 

state-of-the-art microkinetic modeling. As such, a “material gap” hinders the analysis 

of the underlying mechanisms at the atomic-scale level. To fill this gap, the modeling 

of the catalyst structure under reaction conditions is required [2].  

Here, we present the development of a methodology for the analysis of the 

structure-activity relation in heterogeneous catalysis. The methodology is based on 

the combination of microkinetic modeling and ab initio thermodynamics with Wulff 

constructions and Boltzmann statistics at given conditions of chemical potential in the 

reactor [3]. First, ab initio thermodynamics is applied to characterize the bulk and 

surface structure of the catalyst. The three-dimensional shape of single-crystal 

nanoparticles and the corresponding distribution of active sites are calculated either 

with the Wulff construction method or Boltzmann statistics especially at low 

nanoparticle sizes, where a statistical representation of the catalyst morphology is 

needed. In doing so, the structure and the composition of the atoms at the surface is 

determined, and therefore the nature of the sites in reaction conditions is fully 

characterized. Then, microkinetic analyses are performed on the different sites in 

order to unravel the identity of the active site in reaction. Selected examples in the 

context of partial oxidation, CH activation, water-gas shift and reverse water-gas shift 

on metal catalysts will be employed as showcases.  

For example, our analysis on the CH4 catalytic partial oxidation (CPO) on Rh 

shows that the catalyst changes morphology drastically by undergoing a bulk phase 

transition from Rh2O3 to Rh during reaction [3]. After this modification in the nature of 
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There are two well-known linear invariances that are widely used in chemistry 

and chemical engineering: element conservation balances, and stoichiometric 

relationships. The first ones are valid regardless of the properties of the reaction 

mechanism; the latest correspond to the detailed mechanism of a complex reaction 

[1, 2].  

Since 2011, a new type of invariant expressions closely related to Onsager’s 

reciprocal relations was found, arising from two symmetric experiments performed 

from different initial conditions (say pure A or pure B). In the simplest case of the 

single reversible reaction A ⇄ B, it was found that the ratio of symmetric 

concentration profiles yields the equilibrium constant Keq of this reaction, BA(t)/AB(t) = 

Keq. It is valid for any value of time t>0, i.e. throughout the course of the chemical 

reaction. It holds not only at the equilibrium but at any moment after the start of the 

reaction. This equality is neither the element conservation balance nor the pseudo-

equilibrium relationship for the “fast” reaction; it reflects intrinsic properties of the 

described reciprocal experiments [3, 4]. The similar type of invariant expression can 

be calculated for any linear complex mechanism, given that the pair of substances in 

the reciprocal experiments are connected via reversible reactions. Later, a new type 

of invariant expressions was found valid exclusively for linear two-step mechanisms, 

using two different approaches: from Scaled Incremental Conversion [2] and from 

Conservatively Perturbed Equilibrium [5]. This new type of invariant expressions 

includes non-thermodynamic ratios of kinetic coefficients of different reactions, often 

combined with thermodynamic ratios such as equilibrium constants.  
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Our most recent results are related to the generalization to more linear complex 

mechanisms of the invariant expressions obtained from CPE. A key concept in these 

new results is the concept of single-step substances, that participate exclusively in a 

single reaction within the linear complex mechanism. The invariant expressions are 

obtained from ratios of two concentration profiles of single-step substances corrected 

by their corresponding equilibrium concentrations, from two experiments with 

different initial conditions.  

First, we found that the invariant expressions obtained for the two-step 

mechanism remain valid in two-step sub-mechanisms that occur within complex 

linear mechanisms. Both a two-step mechanism and a two-step sub-mechanism can 

be seen as single-step substances immediately connected by the same substance. 

The invariant expressions of the two-step mechanism are still valid if other parallel 

reactions occur from the substance that connects the single-step substances [6].  

More generally, we found a procedure to find invariant expressions for complex 

linear mechanisms with at least two single-step substances, either if they are 

connected by a single, same substance, or by any linear sub-mechanism within the 

linear complex mechanism [7]. 
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Oxides with mixed ion-electron conductivity (MIEC) are attracted the attention 

due to their prospective of using as membrane materials for producing pure oxygen, 

catalytic conversion of methane to synthesis gas, as sorbents for oxy-fuel 

combustion, oxygen sensors and electrodes for solid oxides fuel cells [1-3]. 

Despite the practical importance of these processes, there are no universally 

accepted notions today about the stages that determine the course of oxygen 

exchange on the surface of nonstoichiometric MIEC oxides. In our opinion, this is due 

to the lack of a correct approach to obtaining and analyzing kinetic data necessary to 

form ideas about the mechanism of the reaction. As a result, there is a large scatter 

in the literature experimental data which prevents the development of a reliable 

conception of the oxygen permeability mechanism in the MIEC membranes and 

advance in technological aspects. Thus, understanding the factors that can ensure 

high oxygen permeability of perovskite oxides continues to be a challenging and 

actual problem. Earlier, we have developed new oxygen release techniques (QEOR 

and OPPR) to obtain kinetic and equilibrium parameters in grossly nonstoichimetric 

oxides [4, 5]. 

The aim of this work was to carry out a comprehensive analysis of the effect of 

oxygen nonstoichiometry on the kinetic parameters in the processes of oxygen 

transport and chemical relaxation measurements. A theoretical model has been 

developed for comparing the results of three independent methods. The influence of 

oxygen nonstoichiometry to the process of oxygen transport through gas-tight hollow 

fiber membranes was carried out. Stable Ba0.5Sr0.5Co0.75Fe0.2Mo0.05O3– (BSCFM5) 

perovskite was chosen as the object. 
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THE STRUCTURE OF PALLADIUM-CERIA CATALYSTS 
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1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Novosibirsk State University, Novosibirsk, Russia 
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Using a set of structural, spectroscopic and kinetic methods (XRD, TEM, XPS, 

TPR) the structural transformations in Pd/CeO2 catalysts during their calcination over 

a wide temperature range were described in [1]. Depending on the temperature of 

calcination of the catalyst (450-800 °C) a homogeneous solid solution PdxCe1–xO2–, 

PdOx clusters or PdO nanoparticles formed. 

Additionally a TPR-CO study in the flow reactor was carried out. The catalyst sample 

(0.2 g) preliminary was cooled in the reactor to −10 °C. Then the sample was heated to 

450 °C at 10 °C/min heating rate in the reaction mixture containing 1 vol. % CO. 

In order to describe the experimental TPR-CO curves, i.e. the dependences of 

CO2 evolution and CO consumption on the temperature, we used the methods of 

mathematical modeling. The dynamics of CO oxidation in the absence of the O2 gas 

phase was simulated within the model of a continuous stirred-tank reactor. We have 

consistently considered the underling kinetic models that take into account the 

presence of 1) only solid solution; 2) solid solution and clusters; 3) solid solution, 

clusters and palladium oxide nanoparticles. These three cases correspond to 

catalysts calcined at different temperatures. 

Experimental dependences of both CO2 evolution and CO consumption were 

described in the framework of the model, which also takes into account the diffusion 

of oxygen from the volume of ceria to the surface of the reduced palladium solid 

solution. In addition, oxygen spillover from the palladium solid solution to the reduced 

palladium clusters was also taken into account.  

The results of the simulations are consistent with experimental data indicating 

that the surface of a palladium solid solution is active at sufficiently high temperatures 

of about 250 °C. Reduction of palladium oxide nanoparticles by CO occurs at 

temperatures of 100-200 °C. In the presence of PdOx clusters, the catalyst is active 

in the CO oxidation reaction at the temperatures below 100 °C. 

References 

[1] Stonkus O.A., Kardash T.Y., Slavinskaya E.M., Zaikovskii V.I., Boronin A.I. ChemCatChem 2019, 
11, 3505-352. 

Acknowledgements 

This work was conducted within the framework of budget projects No. АААА-А17-117041710084-
2 for Boreskov Institute of Catalysis SB RAS.  



OP-I-8 

52 

MICROKINETIC DESCRIPTION OF CO OXIDATION OVER A 
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Understanding the oxidation of carbon monoxide (CO) is essential for many 

processes, including exhaust gas after treatment and fuel cell operation. It is also 

important for understanding how to most effectively harness energy from 

hydrocarbon fuels. This work explored the catalytic oxidation of CO on a Rhodium 

catalyst supported on alumina (Al2O3) at low temperatures (175-275 °C) and at 

different inlet concentrations in a stagnation-flow reactor. The reactor setup allows for 

reducing the problem to one dimension, which enables accurate kinetic modeling and 

a coupling of gas and surface phase chemistry effects. Reactant species were well-

mixed and flowed towards the catalyst coated onto a heated stagnation plate. 

Various designs of the reactor and catalyst coating methods were explored.  Probe-

based sampling was used to measure gaseous reactant and stable product species 

concentrations as a function of height above the catalyst surface. The conversion of 

CO to CO2 was measured experimentally. A surface microkinetic description was 

developed for the catalytic oxidation of CO, which is critical for hydrocarbon-based 

process reactor design and optimization. State-of-the-art tools, namely pMuTT and 

OpenMKM, developed recently by the group of Professor Vlachos, were employed 

for the first time to develop and parametrize a kinetic model of CO oxidation on 

Rh/Al2O3. 
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OF INTRINSIC KINETICS FOR HETEROGENEOUSLY CATALYZED 

RAPID GAS-PHASE REACTIONS 

Tapio Salmi1, Dmitry Yu. Murzin1, Johan Wärnå1, Vincenzo Russo1,2,  
Teuvo Kilpiö1, Nicola Gemo1, Arne Reinsdorf1, Sabrina Schmidt1,  

Erfan Behravesh1, Zuzana Vajglová1, Rossana Suerz1, Quentin Balme1, 
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1Åbo Akademi, Johan Gadolin Process Chemistry Centre (PCC), Laboratory of 
Industrial Chemistry and Reaction Engineering, FI-20500 Turku/Åbo Finland 
2Università di Napoli Federico II, Chemical Sciences. IT-80126 Napoli, Italy 

Precise determination of intrinsic kinetics for catalytic processes is important for 

several reasons. Kinetic data obtained under stationary and transient conditions give 

indication on plausible surface reaction mechanisms and adsorption behavior of the 

reactants, reaction intermediates and products. Based on experimental data, a 

mathematical model for reaction kinetics can be developed and the rate constants 

can be estimated with regression analysis. Such models being needed from the 

viewpoint of fundamental science, are also of huge importance in the design and 

optimization of chemical reactors in industrial scale. 

Measuring the intrinsic kinetics is a challenge for rapid catalytic reactions, 

because the data obtained with catalyst pellets/particles are often influenced by 

internal diffusion limitations in the catalyst pores. Consequently, the Thiele modulus 

has a high value and the catalyst effectiveness factor is low. A practically applicable 

way to surmount this dilemma is to use very thin catalyst layers (<< 100 m). This is, 

however, not possible in conventional fixed beds, which are frequently used in 

laboratory-scale screening of catalyst materials and measurement of reaction 

kinetics. Microstructured reactors enable the use of very thin catalyst layers 

(<< 50 m) to suppress the diffusion resistance in the pores and to approach the 

conditions of intrinsic kinetics.  

In this work, we illustrate the use of microreactor technology in the experimental 

measurement and mathematical modelling of rapid gas-phase reaction kinetics in 

three cases: hydrochlorination, oxidation and dehydration of alcohols. For all these 

processes, conventional fixed beds are not able to provide reliable data in the 

domain of intrinsic kinetics. The overall reaction schemes and the solid catalysts are 

listed below. 
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CH3CH2OH + HCl = CH3CH2Cl + H2O Al2O3 

CH3CH2OH + ½ O2 = CH3CHO + H2O Au on various supports 

CH3CH2OH = CH2CH2 + H2O  Micro and mesoporous materials 

Besides the main reactions, also some side reactions take place, such as 

etherification of alcohols during hydrochlorination, oxidation and dehydration of 

alcohols. Based on kinetic data and available mechanistic information, stationary-

state rate equations were derived and the numerical values of the parameters were 

estimated with the aid of non-linear regression analysis. Plug flow was assumed as 

the flow pattern in the microreactor channels. A comparison with the activation 

energies reported in the literature reveals that the activation energies obtained in the 

current work are in general higher than those reported previously; sometimes even a 

two-fold difference appeared. One might wonder about the origin of such 

discrepancy. The reason was found by developing a complete reaction-diffusion 

model for porous catalyst layers, 

, , , ,
	 , , , , ,

	 , , , ,
	∑ , , , , , 	  

The rate constants obtained from microreactor experiments were used in the 

model, along with the diffusion coefficients estimated from Fuller-Schettler-Giddings 

equation. Using the model equation, the concentration profiles of the components in 

the catalyst layers with different thicknesses were simulated numerically by using the 

method of lines. The simulation results revealed the reason of the discrepancy 

between literature data and our measurements. For these reactions, the internal 

diffusion resistance becomes very prominent even in rather thin catalyst layers 

(>>20 m) and the effectiveness factor is diminished to 0.1 compared to intrinsic 

kinetics as the dimensions of the catalyst particles (< 1 mm) are approached. 

Evidently some previous kinetic data obtained in conventional fixed beds have been 

influenced by internal diffusion limitations, which in the worst case can diminish the 

activation energy by 50 %. It can be concluded that microreactors is a viable 

alternative to determine the intrinsic kinetics for very rapid catalytic gas-phase 

reactions along with fluidized beds, monoliths and solid foam catalysts. Microreactors 

have the great benefit that the flow pattern in microreactor channels is typically rather 

simple: either plug flow or laminar flow. 
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Gubaydullin I.M.2,3 
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2Ufa State Petroleum Technological University, Ufa, Russia 
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The object of the study is the reactor unit of the catalytic isomerization unit of the 

pentane-hexane fraction, consisting of a cascade of three reactors. The first stage of 

the mathematical description of the object is the building of the scheme of 

hydrocarbon reactions during the process. In all known models [1–3] of the catalytic 

isomerization process of the pentane–hexane fraction, all the hydrocracking gases 

are combined into one product component, as a result of which it is impossible to 

predict the exact composition of hydrocarbon gases. In this work, an attempt was 

made to more detailed analysis of the transformation scheme based on the 

mechanism, including the reactions of hydrocracking products formation. 

The mathematical model of the three-cascaded reactor block, adequately 

describing the chemical transformations within the reactors has been built and 102 

kinetic parameters have been obtained [4]. Compared to the previous work, we 

added 3 reaction stages, this was done in order to examine the process in more 

detail and obtain greater accuracy of the calculations. Thus, we have obtained a 

refined kinetic model consisting of 108 kinetic parameters (54 activation energies and 

54 preexponential factors).  

The inverse problem of chemical kinetics belongs to the problems of continuous 

global optimization. Features of such problems are often nonlinearity, 

undifferentiability, multiextremality (multimodality), lack of analytical expression and 

high computational complexity of optimized functions, as well as high dimensionality 

of the search space. These features of chemical kinetics problems explain the lack of 

a universal algorithm for their solution. In this paper, we consider a harmony search 

method, which is one of the population algorithms. All population algorithms belong 

to the class of heuristic algorithms, that is, algorithms for which convergence to a 

global solution is not proven, but it is experimentally established that in most cases 
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they give a good enough solution. Search for kinetic parameter values was 

performed by minimizing the deviation between the experimental and calculated 

concentrations: 

exp

1 1
,

M N
calc
ij ij

i j

F x x
 

 
 

where xij
calc – calculated values; xij

exp – experimental data; M – the number of 

experiment points; N – the number of substances involved in the reaction. 

To solve the direct problem, the integration method ‘Radau’ was chosen; it’s an 

implicit Runge-Kutta method of the Radau IIA family of order 5 [6]. The error is 

controlled with a third-order accurate embedded formula. 

In addition to solving the inverse problem, the conference will present the results 

of optimization of the reactor block in order to obtain dimethyl substituted 

components (2,2-dimethylbutane, 2,3-dimethylbutane), which affect the octane 

number of catalytic isomerization gasoline. 
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The oligomerization of light olefins is a versatile initiative to selectively produce 

hydrocarbons to be added into gasoline (C5-C12), kerosene/jet fuel (C8-C16) or diesel 

(C11-C24) pools [1] aiming to face the fluctuating fuel supply/demand of the 

transportation market. The increasing interest of the oligomerization is supported by 

the innovations for light olefin production on the conventional routes (stream cracking 

and fluid catalytic cracking units) and from alternative feedstocks (biomass, wastes or 

CO2), via the MTO (from methanol) or DTO (from DME) processes [2]. Acid catalyzed 

light olefin oligomerization is highly exothermic and takes place through the classic 

and well-established carbocation mechanism, including oligomerization and co-

oligomerization steps, as well as skeletal and double bond isomerization, hydrogen 

transfer, cracking and cyclization reactions [3]. Due to the complexity of the reaction 

system, olefin conversion and product distribution strongly depend on the properties 

of the catalyst (acidity and shape selectivity) and on the operating conditions 

(temperature, pressure and space time). The different kinetic models proposed in the 

literature on HZSM-5 zeolites are mainly based on single event kinetic methodology 

[4], without considering either the condensation phenomena of oligomer products at 

high pressure, or catalyst deactivation.  

In this work we have established an original lump-based kinetic model for the 

oligomerization of 1-butene on HZSM-5 zeolite (Si/Al=15) based catalyst, able to 

predict the product distribution at zero time on stream and considering catalyst 

deactivation, as well as higher oligomer condensation in a wide range of operating 

conditions (150-350 °C; 1.5-40 bar; space time, 0.5-10 gcatalyst h molC–1).  

The methodology for the kinetic model is based on the proposed in [5], which 

allows computing, in MATLAB, zero time on stream and deactivation kinetic 

parameters of best fit (kinetic constants and activation energies) simultaneously. 

These parameters have been calculated by fitting the experimental values of product 

molar fractions (obtained in a fixed bed reactor Microactivity) to the calculated ones 

by using multivariable nonlinear regression. We assumed gas plug flow and 



OP-I-11 

58 

isothermal regime for the resolution of the conservation equations. Moreover, G-L 

thermodynamic equilibrium was considered for accounting for high oligomer 

condensation, by supposing that only gas phase compounds are reactive. 

Figure 1 shows the reaction scheme, which includes 4 main lumps (C4=, C8=, C12= 

and C16= olefins), and 4 secondary lumps (REST1-REST4) formed by secondary 

reactions (oligomerization-craking and hydrogen transfer, HT). The quality of the fit is 

also depicted, by comparing the experimental product molar fractions (points) of 

evolution with time on stream, with the values calculated using the kinetic model 

(lines) at low (1.5 bar) and high P (30 bar) conditions. 
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Figure 1. Simplified reaction scheme of 8 lumps (left). Fitting quality (right) 

This model strikes a good balance between simplicity and acceptable fitting 

quality to the experimental results, which enables the subsequent optimization of the 

operating conditions in order to obtain fuels in the gasoline, jet fuel or diesel range. 
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Hydrotreatment of Vacuum Gas Oil (VGO) is a critical process in refinery, 
preparing feedstock for hydrocracking and catalytic cracking processes. It prevents 
nitrogen poisoning of converting catalysts, increases hydrogen content, and enables 
reaching standard environmental specifications (sulfur, etc.) of downstream refinery 
products [1,2].  

A large range of models for Hydrodesulfuration (HDS) and hydrodenitrogenation 
(HDN) of VGO exists [3]. However, the chemical engineer has to conciliate two 
antagonist constrains: (1) The need of model complexity to succeed describing the 
always more wider range of feedstock reactivity. Indeed, the increasing importance of 
heavy crude oil upgrading onto valuable products leads to a large diversification of 
VGO feedstock nature and composition; and (2) the scarcity of industrial data, 
usually limited to macroscale properties of VGO (density, Sulfur, SimDis, etc.) that 
not allow the use of model that requires more complex information.  

Semi empirical kinetic models are relevant answers to this statement. Indeed, 
several works shown the good agreement of single stage power law or Langmuir-
Hinshelwood type of models when applied on one or several VGO of similar profiles 
[4]. Though, application of such models on unalike feedstocks require addition of 
correlative correction terms associated to feed properties [5]. 

	 , ,  

With 
 

f: empirical function based on feed properties (linear, monomial, etc.) 
g: kinetic function (power law, Langmuir-Hinshelwood, etc.) 

 
The aim of this work is to associate classical methodology for kinetic model 

parameter estimation with machine learning methods to construct this semi-empirical 
kinetic model. The working process shown in Figure 1 is proposed. 
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Oxidative coupling of methane (OCM) is a process for converting methane to 

higher hydrocarbons in the presence of oxygen. The desired products are ethane 

and ethylene with some side products such as C3, H2O, and COx. La2O3-based 

catalysts, as one of the major classes of OCM catalyst in research, are considered 

potentially viable for commercial applications since the catalytic activitity could be 

promoted with different metal dopants such as Sr, Ca, and Ce, etc. However, 

currently available catalysts still cannot satisfy the yield and selectivity of C2+ to 

achieve commercial viability. Kinetic studies have been investigated to construct 

kinetic models to further understand and accurately describe the OCM process. 

Instead of performing a large amount of experiments for various operating conditions, 

a comprehensive kinetic model could predict the best operating conditions and 

screen for the most suitable catalysts by performing sensitivity analysis on target 

products. It is commonly accepted that both homogeneous (gas-phase) and 

heterogeneous (surface-catalyzed) reaction pathways occur during the OCM process 

[1,2]. The process starts with the chemisorption of oxygen on the catalyst surface, 

and one hydrogen atom from methane is abstracted by the surface active oxygen to 

form a methyl radical; two methyl radicals then combine in the gas phase and form 

one ethane molecule. Then ethylene is formed via dehydrogenation of ethane [3,4]. 

Many studies have considered and implemented an universal reaction mechanism 

for all the catalysts during OCM. However, in reality, the OCM reaction mechanism 

may not be the same for catalysts composed of different metals. The effect of water 

vapor, for example, on the kinetics for OCM has been investigated, and the results 

turned out to be different depending on the catalyst composition. Therefore, specific 

kinetic models should be developed independently for each category of catalysts [5]. 

In this study, the model is develped specifically for different La2O3-based 

catalysts with Sr and Ce doping based on well-validated empirical gas-phase 
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mechanism. The surface-catalyzed mechanisms are modified based on the concept 

of catalytic descriptors [6] and the texture properties of the catalysts. The proposed 

kinetic model is validated over a wide range of operating conditions with experimental 

data, and provides new insights of developing a comprehensive model for La2O3-

based catalysts.  
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Pd-catalysed Suzuki-Miyaura (SM) cross-coupling reactions are one of the most 

efficient and user friendly methods to obtain biphenyl products and their homologues. 

Especially milder reaction conditions around 80-100 °C, the commercial availability of 

boronic acids, which are easier to handle and remove when compared to other 

organometallic reagents, are some of the major advantages of SM coupling reaction. 

However, the use of homogeneous palladium complexes of phosphine based ligands 

as catalysts during Suzuki-Miyaura reactions limit their applications due to the toxic, 

air sensitive and high costs for the reusability of them. Yet the current focus is to 

develop heterogeneous phosphine free catalysts. Supported metal nanoparticles are 

promising in different heterogeneous catalyst applications. However, to have 

effective nanocatalysts a good control of nanoparticle properties such as size and 

homogenous dispersion of metals are necessary. In this manner, supercritical 

carbondioxide (scCO2) deposition method is the matter of choice since the low 

viscosity, zero surface tension and easier controllable density make scCO2 a 

practical solvent to deposit nanoparticles on especially ultrafine supports like carbon 

nanotubes (CNT). In this work, Pd/CNT nanocatalysts were prepared via scCO2 

deposition method to be applied on Suzuki-Miyaura coupling reactions conducted 

below conventional temperatures between 20 and 60 °C. The formation of metallic 

palladium, whose particle size distribution was estimated around 10.5 nm, was 

confirmed with XRD measurements and TEM images. The prepared Pd/CNT 

catalysts (0.0050 mmol) were used in Suzuki-Miyaura cross-coupling reactions of 

1.0 mmol bromobenzene and 1.2 mmol phenylboronic acid at 20 °C, 40 °C and 60 °C 

in 2.0 ml of Ethanol:Water (1:1) solution in the presence of 2 mmol K2CO3 as base to 

obtain biphenyl. At 60 °C, the conversion reached to 98% in 30 min while at 40 °C 

similar conversion was recorded around 90 min. At 20 °C, in 3 hours, conversion 

reached to 70 %. Then, the obtained kinetic data were used to estimate the catalytic 

rate constants at different temperatures and the activation energy of the reaction with 
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the help of Arrhenius equation. The kinetic data analyses were done according to 

batch reactor, constant volume and second order kinetics. Activation energy was 

estimated around 59.2 kJ for the rate constants predicted at 20 °C, 40 °C and 60 °C. 
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Introduction 

The reaction of CO2 with CaO-based solid sorbents in cyclic mode, known also 

as calcium looping (CaL), has great potential for capturing CO2 at stationary sources, 

storing/releasing energy in concentrated solar power plants, or even enhance 

thermodynamically limited reactions such as reforming and water-gas-shift [1-3]. 

Lime (pure CaO) suffers from severe deactivation mainly due to enhanced sintering 

phenomena at high temperatures. Many efforts are being put on preventing the loss 

of capacity of CaO through sorption/desorption cycles, by introducing an inert 

stabilizing phase in the CaO lattice [4]. Herein, we investigate the carbonation 

reaction kinetics of materials with different stabilizing agents aiming at developing a 

robust reaction kinetic model. 

Materials and Methodology 

Four materials were used in the kinetic experiments – a calcined limestone (pure 

CaO), a calcined dolomite (33 wt. % MgO/CaO), and two MgO- and ZrO2-promoted 

synthetic sorbents, containing 15 wt % MgO and 25 wt % ZrO2, denoted as CaMg85 

and CaZr75 respectively). All the materials were sieved in the range of 45-75 m. 

The kinetic experiments were carried out in a continuous-flow fixed-bed reactor 

apparatus connected with a mass spectrometer. The temperature and CO2 partial 

pressure ranges were 670-820 °C and 0-1.2 atm respectively. For the mathematical 

description, the classic Random Pore Model was appropriately modified to take into 

account the presence of the inert phase. The developed modified model included 

parameters for each material related to the crystal sizes, BET surface area and 

dispersion of the stabilizing agent, information acquired using XRD, nitrogen 

physisorption and SEM characterization techniques.  

Results 

The fitting of the modified Random Pore Model (mRPM) on the experimental 

conversion-time data is shown in Figure 1A for carbonation of CaZr75 at 770 °C and 

under various PCO2 values. It can be observed that carbonation reaction is very fast, 
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achieving a high value of material’s conversion in a few seconds. The values of the 

specific rate r in terms of reaction front velocity derived from fitting of each 

experimental X-t curve are gathered in Figure 1B as a function of the driving force. 
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Figure 1. A) Experimental conversion-time data fitted by the mRPM for the carbonation of CaZr75 

sorbent at 770 °C and for various PCO2, B) rate values vs the driving force for all four tested sorbents  

Carbonation is a first order reaction with respect to CO2 (Figure 1B). Interestingly, 

experimental data obtained with all the examined sorbent materials can be fitted 

satisfactorily by the same lines despite the differences in the type and content of the 

stabilizing agent, further imposing that the RPM was modified correctly. A common 

value of activation energy for all sorbents was calculated equal to 22.1 ± 5.9 kJ/mol, 

which is in agreement with values reported previously for pure CaO [5]. 

Conclusions 

Carbonation reaction of CO2 with CaO-based sorbents exhibits fast kinetics (in 

the order of a few seconds), which is of great importance for real applications. 

Carbonation is a first order reaction with respect to CO2 with a low activation energy 

of 22.1 ± 5.9 kJ/mol. A kinetic model was developed applicable for CaO-based 

sorbents with different type and content of stabilizing phase. 
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The use of metal complex catalysts significantly softens the reaction conditions 

and allows them to implement into industrial production [1]. Metal complex catalysis 

is characterized by a multi-stage scheme of chemical transformations and the 

presence of a large number of intermediate complexes, which can be both stable and 

unstable. The effect of intermediate complexes and initial substrates on the reaction 

is reflected in the kinetic parameters of the corresponding stages. 

The mathematical model of homogeneous isothermal reactions of metal complex 

catalysis proceeding with a change in the volume of the reaction mixture is described 

by the Arrhenius kinetics (1) [2]: 
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 (1) 

Where   – time, min; νij – stoichiometric coefficients; J – number of stages; yi – 

concentration of substances participating in the reaction, mol/L; I – number of 

substances; wj – rate j-th stage, 1/min; kj ,k-j – stage speed constants (reduced), 

1/min; Ej
+, Ej

- – activation energies of direct and reverse reactions, kcal/mol; R – gas 

constant, 2 cal/(mol*K); T – temperature, K; ij – negative elements of the matrix νij, 

ij – positive elements νij, kj
0,k-j

0 – preexponential factors, 1/min; Фк – catalyst feed 

function; Q – molar flow rate (mol/min). 

The object of research is the catalytic hydroalumination (HA) of olefins. The 

process allows to obtain important cyclic and acyclic organoaluminum compounds of 

a given structure and is of great industrial importance. A detailed kinetic model of the 

reaction with diisobutylaluminium chloride (DIBAC) according to (1) is given in [3, 4]. 

The model describes the induction period in the reaction with DIBAC. The reaction 

products are higher organoaluminum compounds Bu2AlR and ClBuAlR. Chemical 
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experiments were carried out at several temperatures and with an initial amount of 

catalyst. Variable parameters in the multicriteria (MCO) optimization problem are 

reaction temperature, an initial amount of catalyst, and reaction time. The 

optimization problem was solved by Pareto approximation methods [5]. 

In fig. 1 shows the results of solving the MCO problem of the conditions for the 

reaction of HA olefins (octene-1) with DIBAC. 

  
Fig. 1. Approximation of the Pareto front of the MCO-problem of the reaction of HA olefins in the 

presence of DIBAC 

For a fixed reaction time (250 min) and varying temperature and an initial amount 

of catalyst, the values of product concentrations are shown in Fig. 1 a, curve II. 

Variation of time to achieve increased product yield Bu2AlR, but does not affect the 

output of ClBuAlR – Fig. 1 a, curve I. The values of the variable parameters, i.e. the 

Pareto set is shown in Fig. 1 b. The increase in reaction time allows reducing the 

initial amount of catalyst in the reaction from 1 mmol to 0.2 mmol. The optimal 

temperature range is 25-30 °C. The adequacy of the solution is confirmed by 

experimental data. 
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FOR DME SYNTHESIS 

Portillo A., Ateka A., Sanchez-Contador M., Aguayo A.T., Bilbao J. 

Department of Chemical Engineering, University of the Basque Country (UPV/EHU), 
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e-mail: ander.portillo@ehu.eus 

Bifunctional catalysts for dimethyl ether (DME) synthesis from syngas + CO2 

mixtures allow shifting methanol (MeOH) synthesis equilibrium, enhancing its 

formation over the metallic catalyst while it dehydrates to DME over the acid catalyst. 

In this work, a core-shell structured bifunctional CuO-ZnO-ZrO2@SAPO-11 catalyst 

has been used and a macrokinetic model has been established for this particular 

catalyst configuration. Catalyst synthesis, characterization and the reaction 

equipment, and experimental results considering deactivation have been described in 

previous works [1,2]. 

The model describes the effect of different operating conditions over product 

distribution with time on stream considering the confinement of each reaction in a 

section of the catalyst particle. Elementary reactions have been considered for CO 

and CO2 hydrogenation to MeOH, its dehydration to DME, water gas shift (WGS) 

reaction and for the undesired side reaction of hydrocarbons formation. Besides, 

catalyst deactivation has also been considered. In the synthesis of MeOH a term 

considering the competitive adsorption of water on the metallic sites has been 

considered, and a term considering the competitive adsorption of both water and CO2 

on the WGS reaction. Experimental data for model fitting was obtained carrying out 

catalytic reactions in an isothermal fixed bed reactor under the following operating 

conditions: 250-320 °C; 10-50 bar; space time 1.25-15 gcat·h·molc–1, H2/(CO+CO2) 

molar fraction, 2.5-4; CO2/(CO+CO2) molar fraction, 0-1. In order to get the 

macrokinetic model, different assumptions are considered: i) MeOH synthesis occurs 

only in the metallic function; ii) its dehydration occurs only in the acid catalyst; iii) for 

both regions kinetics are limited by reactants internal diffusion. 

The kinetic model predicts satisfactorily the performance of the core shell catalyst 

under a wide range of operating conditions, predicting products yield evolution with 

time on stream (as shown in Figure 1). 
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The considered deactivation kinetics 

correspond to a non-selective model (it 

affects reactions in both phases), with a first-

order expression referred to the concentration 

of oxygenates (MeOH and DME) and to 

activity, considering also the attenuation of 

deactivation by the competitive adsorption of 

water and CO2 in the active sites of both 

phases. To consider components diffusion 

through the core-shell structure (quantified 

from porous structure) along with kinetic 

equations, spherical geometry of the particles has been assumed and the 

concentration profile for any particle has been defined as: 

 
,    Eq.(1) 

Where ri, is formation rate of component i; De,I, its diffusion coefficient;  the 

density of the particle; and, yi, molar fraction of component i. 

To solve Eq. (1), diffusion on the interphase between both phases has been 

considered as equal. Thus, to quantify the diffusion terms, the formation term is 

considered null for each compound in the phase of the particle where it is not formed 

(DME in the metallic function, since there is no MeOH dehydration; H2, CO, CO2 and 

MeOH in the acid phase, since WGS reaction and MeOH formation occur only in the 

core). 

This model has allowed to ascertain precisely the effect of different operating 

conditions in order to achieve different goals, DME yield or CO2 valorization, as they 

have different optimal conditions. 
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EXPERIMENTAL AND NUMERICAL INVESTIGATION OF SPECIES 
TRANSPORT IN CATALYTIC FLUIDIZED BED REACTORS 
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The conversion and selectivity of catalytic fluidized bed reactors (FBR) result from 

the coupling between the multiphase fluid dynamics and the catalytic reaction 

mechanisms at the particles’ surface. In this view, a detailed multiscale modeling can 

provide deep insights into the coupling between physics and chemistry in the 

fluidized bed units. To this end, the Computational Fluid Dynamics (CFD) description 

of the gas flow combined with the Discrete Element Method (DEM) algorithm is 

crucial. Nevertheless, in reactive CFD-DEM, where DEM is used for the particle 

tracking, the chemistry is typically computed per computational cell, assuming the 

composition of each particle to be equal to the one of the hosting cell without mass 

transfer limitation [1]. Moreover, linearized rate equation kinetics are usually 

employed to sustain the computational cost. Thus, we recently proposed a reactive 

CFD-DEM framework [2] able to deal with the microkinetic description of chemistry 

and the modeling of mass transfer with gas-particle correlations in fluidized beds. 

Furthermore, we successfully tested the framework in lab-scale chemically limited 

reactors, managing the computational cost arising from microkinetic chemistry with 

speed-up algorithms [3].  

In this work, we investigate the capability of the framework to correctly couple the 

description of bubble to particle transport phenomena with the interphase transport. 

For this purpose, we experimentally and numerically studied highly diluted (1:85 

volumetric ratio of active particles) lab-scale FBR for the fast hydrogen oxidation on a 

Pt/Al2O3 powdered catalyst. In particular, a mixture of 0.5 %/0.2 % v/v 

hydrogen/oxygen was used as the inlet gas stream. The catalyst was manufactured 

by depositing Pt on porous alumina particles (300 m mean diameter) employing 

Atomic Layer Deposition (ALD) [4] in an FBR. This method allowed to precisely tune 

the Pt nanoparticle size distribution to the optimal range of 1-3 nm for all the three 

investigated Pt loadings (1 %-2 %-5 % w/w). With respect to the numerical part, rate 
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systems, in addition to the catalytic mechanisms proved in previous research, paving 

the way for a numerically optimized design of fluidized units of technical relevance. 
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MICROKINETIC DEVELOPMENT FOR THE METHANATION OF  
CO2 ON Ni CATALYSTS WITH RMG-CAT 
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1Institute of Chemical and Electrochemical Engineering,  
Clausthal University of Technology, Clausthal-Zellerfeld, Germany 

2School of Engineering, Brown University, Providence, RI, USA 

Microkinetics enable the most accurate description of a reaction on a given 

catalyst surface without any restrictions. If the microkinetics are elucidated by 

experiments or theoretical computations, it is possible to study the reaction in all 

possible operating conditions and to drive the process towards improvement. The 

development of the microkinetics and the mechanism itself is a time-consuming task, 

which can be significantly accelerated with the usage of an automated Reaction 

Mechanism Generator for heterogeneous catalyzed reactions (RMG-Cat) [1]. RMG-

Cat is applied in this study to investigate the mechanism for the methanation of CO2, 

which is a crucial process to produce synthetic natural gas. The microkinetics are 

incorporated into a reactor model and compared to experimental results. 

To generate a mechanism, RMG-Cat is required to accurately predict reaction 

rate parameters and the thermochemistry of adsorbates on the active facets, which it 

achieves based on databases and scaling relations. C, O and H binding energies for 

the scaling relations are determined with state-of-the-art electronic structure 

calculations for the Ni(111) and Ni(211) facet, which are discussed to be the active 

sites for the methanation on Ni [2]. The algorithm considers all possible reactions and 

intermediates, but only those reactions and species that exceed a certain threshold 

are included in the microkinetic model. 

Steady-state and transient CO2 methanation experiments are conducted on a 

Ni/Al2O3 catalyst in a Berty reactor. Especially recorded temporal concentration 

profiles can be used for the validation of the proposed mechanism [3], which is 

performed in a mean-field Berty reactor model in Python within the Cantera 

framework. The Berty reactor is modeled as a continuously stirred tank reactor with a 

reactive catalyst surface. Figure 1 shows the reaction paths for both Ni facets.  
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4Aramco Research Centre, Detroit, USA 
5Fuel Technology Division, R & DC, Saudi Aramco, Dhahran, Saudi Arabia  

For combustion systems, chemical kinetic modeling is an important tool in the 

analysis of fuel interactions chemistry. Many detailed kinetic models has been 

developed over the course of years in the field of combustion, to interpret the 

fundamental kinetic experiments in shock tubes, RCM, flame reactors. Researchers 

have reduced these detailed models using different techniques and these reduced 

mechanisms coupled with fluid mechanical models have become valuable in 

understanding complex combustion phenomena in practical combustion devices such 

as internal combustion engines (IC). This study proposes a new reduced model 

consisting of four component (Heptane/Iso-octane/Toluene/Ethanol) gasoline 

surrogate model containing 68 species and 310 reactions. The model has been well 

validated against a wide range of ignition delay time (IDT) and flame speed (FS) 

measurement data and compared against two characteristic literature models from 

Yang et al (2019) and Liu et al (2013) [1][2]. Overall excellent agreements were 

observed between chemical kinetic model and experimental data across the entire 

research octane number (RON), temperature and pressure ranges. The model well 

validates across entire equivalence ratios (lean and rich conditions) achieves an 

advantage over previous work by Yang et al (KAUST-2019). In addition, the model 

has been coupled with computational fluid dynamic models to simulate the heat 

release experimental data at homogenous charge compression ignition (HCCI) 

conditions for cooperative fuel research engine (CFR) of university of Michigan [3] 

and also constant volume spray ignition delay time and lift of length data for primary 

reference fuels (PRF) of various RON sweeps recommended by engine combustion 

network (ECN) [4]. In total, the coupled reduced model can qualitatively predict the 

experimental data for PRF, TPRF, TPRF-Ethanol gasoline surrogates with an 

improved performance.  
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Figure. Ignition delay time (IDT) validation of PRF 91 at φ = 0.5 (top-left);  
Flame speed (FS) validation of PRF 87 at various pressures (top-right);  

Constant volume spray simulation IDT and Lift of length validation for various PRF RON sweeps 
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KINETICS OF MALEIC ANHYDRIDE SYNTHESIS USING A 

MILLISTRUCTURED REACTOR 

Mauritio Müller1, Anderson S.1, Martin Kutscherauer1,2, Gerhard Mestl2 and 
Thomas Turek1 

1Institute of Chemical and Electrochemical Process Engineering,  
Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 
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Almost the entire production of maleic anhydride (MA), one of the most important 

intermediate products in the chemical industry, is based on the selective catalytic 

oxidation of n-butane over vanadium phosphorus oxide (VPO) catalysts. Industrially, 

this process is typically carried out in multi-tubular fixed-bed reactors at butane 

contents below 2 % and temperatures in the range of 390 to 430 °C [1]. Despite 

these comparatively low butane concentrations, the limited heat removal can result in 

hotspots of up to 70 K [1], which cause a considerable potential of thermal runaway. 

Furthermore, the hotspot has a negative effect on the selectivity to the target product 

MA, so that the MA yield of industrial reactors is limited to approx. 65 % [2]. 

Detailed modelling and simulation of the process can help to investigate the 

effects of the hotspot and temperature profile on the performance of the process. An 

important prerequisite are profound information about the kinetics. Unfortunately, 

none of the published kinetics can satisfactorily describe the process, which, among 

other reasons, is due to the fact that the formation of the by-products acetic (AcA) 

and acrylic acid (AcrA) is typically neglected. Therefore, the aim of the present study 

is to investigate the kinetics and to clarify the role of AcA and AcrA in the formation of 

the undesired by-products CO and CO2. The influence of the reaction products CO, 

CO2, water and MA on the kinetics will also be investigated. 

For this purpose, an enhanced version of the previously described [3] nearly 

isothermal salt bath-cooled millistructured fixed-bed reactor (72x44x1.65 mm) was 

used. To avoid mass transfer resistances, the reactor was filled with fine particles 

obtained by milling of an industrial catalyst provided by Clariant AG. The experiments 

were carried out under industry-related conditions, namely 380 to 440 °C, 1.2 to 

1.5 bar and 0.9 to 2.1 % n-butane in air. Additionally, some experiments were carried 

out under supply of the reaction products CO, CO2, water, MA, AcA and AcrA. The 
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KINETICS OF ETHYL LEVULINATE SYNTHESIS IN A 
CHROMATOGRAPHIC REACTOR 

Vincenzo Russo1,2,*, Carmelina Rossano1, Riccardo Tesser1,  
Tapio Salmi2, Martino Di Serio1 

1Università degli Studi di Napoli Federico II, IT-80126 Napoli, Italy, v.russo@unina.it 
2Åbo Akademi, FI-20500 Turku, Finland 

Esterification of carboxylic acids with alcohols is a very actual topic of modern 

bio-refinery: it is normally performed to produce added-value products, such as 

solvents and plasticizers [1]. Ethyl levulinate has potential applications in the field of 

inks and paints. It is synthetized from levulinic acid and ethanol in the presence of an 

acid catalyst, normally a homogeneous one (e.g. H2SO4), but we have recently 

demonstrated that acid resins (e.g. Smopex-101) show a good activity in ethyl 

levulinate production [2]. As water is produced by the chemical reaction, and being 

the reaction reversible, it would be necessary to remove water onsite to improve the 

reaction conversion. Reactive chromatography could solve this issue, as it is an 

operation unit that combines chemical reaction and chromatographic separation, 

allowing the intensification of the esterification process. In the present work, an effort 

was made to investigate the kinetics of levulinic acid esterification with ethanol in the 

presence of Dowex 50WX-8, a non-porous gel acid catalyst used as 

chromarographic reactor packing material [3]. Starting from the concept, a detained 

kinetic investigation was conducted in an isothermal batch reactor. Advanced 

intraparticle models were used to verify the influence of fluid-solid and intraparticle 

mass transfer limitations.  

The esterification experiments were carried out in a Hastelloy reactor with a 

capacity of 200 mL. Continuous experiments were performed packing a stainless-

steel tubular reactor with Dowex 50WX-8. Ethanol was pumped continuously in the 

reactor, via a HPLC pump, and a solution of levulinic acid in ethanol was injected 

through the reactor with a fixed volume 20 uL, via a HPLC injector. The reactor was 

heated by electrical resistances. Data were collected at the outlet of the 

chromatographic reactor using an online detector (UV at 250 and 280 nm). 

The kinetic investigation conducted in a batch reactor, demonstrated that the 

reaction follows a second order reversible mechanism referred with respect to the 

reactants and the products, and a linear behavior with respect to the catalyst loading 
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A MULTIPHASE OPERATOR SPLITTING MODEL FOR THE EULER-
EULER SIMULATION OF REACTIVE FLUIDIZED SYSTEMS 

Daniele Micale, Riccardo Uglietti, Mauro Bracconi, Matteo Maestri 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, via La Masa 34, Milano, Italy, matteo.maestri@polimi.it 

Fluidized systems are still a research challenge due to their complex multiphase 
fluid dynamics. In this context, Computational Fluid Dynamics (CFD) combined with a 
detailed description of the chemistry is a powerful tool to analyze reactive fluidized 
beds. In particular, a Euler-Euler (EE) approach is adopted to describe the 
multiphase flow in pilot/industrial scale due to the large dimension of the units. 
Indeed, this approach treats both gas and solid as continuum fluid phases. In doing 
this, the description of large-scale systems is possible at the cost of losing the 
tracking of each solid entity. In order to simulate reactive systems, the energy and 
species equations are included in the CFD framework for both the phases as 
reported in Eq. (1):  
 

  (1)

Where  is a generic quantity transported in the reactor,  is the advection 
contribution,  is the gas-transport contribution,  is the reaction contribution and the 
superscript  and  represent the gas and solid. Despite the coupled nature of the 
three contributions, a fully coupled solution of these CFD equations cannot be 
performed [1]. Thus, the gas and the solid phases are usually solved sequentially, 
and the chemistry is introduced with linearized reaction source term  [2]. Thus, the 
simulation time step must be carefully chosen to be smaller than the times of the 
physical and chemical phenomena involved in the process. On the one hand, the 
Courant condition ensures the correct description of the advection. On the other 
hand, a stricter time step condition with respect to the Courant one is necessary to 
describe gas-solid transport, due to high particle specific surfaces, and chemical 
reactions. Therefore, time steps in the order of 10–7-10–5 s are required, especially if 
a detailed microkinetic description of the chemistry is adopted. In this work, a 
Multiphase Operator Splitting model (MOS) (Fig. 1(a)) is proposed to solve this issue, 
which would hamper the simulation of industrial units whose dynamics extend for 
tens of seconds. According to this model based on a Euler-Euler description of the 
gas-solid flow, the system is divided in several reactors, one per computational cell. 
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MICROMIXING IN A GAS-LIQUID VORTEX REACTOR:  
AN EXPERIMENTAL AND NUMERICAL STUDY 

Yi Ouyang, Manuel Nuñez Manzano, Sepehr Madanikashani,  
Laurien A. Vandewalle, Vladimir N. Shtern, Guy B. Marin,  

Geraldine J. Heynderickx, Kevin M. Van Geem 

Laboratory for Chemical Technology, Ghent University, 
Technologiepark 125, 9052 Ghent, Belgium, Kevin.VanGeem@UGent.be 

Micromixing performance of a reactor is the controlling factor for fast reactions in 

polymerization, pharmaceutical and crystallization applications [1,2]. To achieve 

process intensification in micromixing-controlled processes, a vortex-flow unit is an 

efficient technology that has major advantages of simple structure, low cost and easy 

scale-up. Ever since a gas-solid vortex reactor (GSVR) was built and operated at 

Laboratory for Chemical Technology (LCT, Ghent University), many successful 

applications have been confirmed [3,4] and patented. Our recent work showed the 

applicability of the vortex technology for gas-liquid flows [5], leading to the concept of 

a gas-liquid vortex reactor (GLVR). The micromixing efficiency of the GLVR could 

also be an enormous advantage for applications involving liquid-liquid mixing and fast 

reactions. 

To investigate the micromixing process, computational fluid dynamics (CFD) is 

first employed as a powerful tool to reveal and understand the hydrodynamics and 

reactive flow in the GLVR. Figure 1 shows the velocity filed in the GLVR and the 

contour of the liquid (as the red colour) distribution in the reactor chamber. The gas 

flow (as the blue colour) generates the initial vortex flow, and the momentum transfer 

between the gas phase and liquid phase disperses the liquid in the reactor chamber 

and increases the coalescence-redispersion frequency. The gas-liquid interface is 

large and tiny droplets are formed, which will be validated by visualization data from 

high-speed camera and particle image velocimetry measurements.  

The Villermaux–Dushman iodide–iodate reaction system will be used to quantify 

the micromixing efficiency of the GLVR [6]. Figure 2 shows the schematic diagram of 

the experimental setup. The acid stream and the buffer stream containing ions of 

iodate, iodine and borate are pumped into the GLVR and mixed. The N2 gas flow 

generates the initial vortex flow, and the liquid is entrained by the gas flow. Samples 

are collected at the outlet and immediately analysed by an ultraviolet-visible 

spectrophotometer. Effects of operating conditions and different GLVR designs will 
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VERSIONS OF THREE DIFFERENT CHARACTERIZATION 
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1. Introduction 

Understanding how transport phenomena and chemical reactions within porous 

catalysts are affected by the texture of the support opens the door to optimizing the 

catalyst performance. Explicitly accounting for the phenomena occurring at the pore 

scale can thus lead to novel and more rigorous heterogeneous models for chemical 

reactor design. To model the structure of porous catalysts, several approaches can 

be found in the literature [1,2]. In this work, computational tools were developed to 

refine the digital representation of a -alumina pore network [3,4] in order to match its 

actual textural properties and topology. Each of these tools simulates an 

experimental characterization technique: nitrogen porosimetry, mercury porosimetry, 

and Nuclear Magnetic Resonance cryo-porometry. By using theoretical and empirical 

models, these techniques provide quantitative textural information and qualitative 

topological characterization [5]. The experimental curves obtained from the 

characterization of an actual sample are matched by the digital characterization 

curves generated with the computational versions of three different characterization 

techniques applied to the pore network structure. Finally, a digital twin of this  

-alumina sample is recreated by using an optimization loop that manipulates the 

input parameters used for the pore network generation. 

2. Results and discussion 

The textural properties of the digital pore network were calculated both 

geometrically and by processing the results of the simulated characterization 

techniques. Compared to the direct calculation of the textural properties by simply 

counting the number of pores, the direct simulation of the entire characterization 

profiles provides a better interpretation of the experimental results by analysing the 
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validity of the assumptions made by theoretical and/or empirical models used for the 

calculation of the material’s textural properties from the experimental data. The pore 

network generation tool is based on a O(log(n)) algorithm that allows to create a 

network with 6 ∙ 10  pores in only 46 seconds on a Dell desktop computer with a 

3.5 GHz Intel Xeon E5 CPU and 16GB of RAM. For the characterization techniques, 

the use of a dynamic priority list [6] to handle the exploration of the network is valid 

for all techniques, as the phase change and/or percolation phenomena occurring in 

every technique are constrained by the topology of the network. The algorithms are 

capable of reproducing typical hysteresis behaviour observed in the experimental 

results for alumina catalyst supports. By versioning the Invasion Percolation 

algorithm to our needs and handling the priority list using diverse versions of binary 

heaps, we were able to maintain a good time performance for the different algorithms 

created for each characterization. The execution time for the characterization 

techniques corresponds to an O(nlog(n)) behaviour and takes about 25 seconds for 

8 ∙ 10  pores. To match the textural properties of the digital pore network with that of 

an actual alumina support, the input variables of the network model are modified until 

the differences between the output textural properties and actual values are 

minimized. A good agreement was observed between the properties of the digital 

twins and the actual aluminas. 

3. Conclusions 

In this work, a pore network generation algorithm was used to represent gamma-

alumina supports. To obtain the textural properties of such a digital pore network, an 

Invasion Percolation algorithm was adapted in order to characterize this structure by 

means of the computer-equivalent of nitrogen porosimetry, mercury porosimetry, and 

NMR cryo-porometry. Using the developed algorithms, it was possible to generate 

digital pore networks whose properties are in good agreement with the properties 

experimentally measured by different characterization techniques on actual gamma-

alumina supports. 
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on the absorption efficiency of the process with consequent impact on gas-phase 

mass transfer coefficient (KG). It could be seen from figure 1(a) that in addition to 

increase in gas velocity, increase in the rotating speed of the system from 0-165 

RPM was observed to have enhanced the KG values from 0.003 to 0.055 m/s. 

Similarly, in figure 1(b) the peak values in absorption efficiency of the process has 

increased by about 25 %. The outcome of the liquid phase study also yielded a 

similar trend. 

(a) (b) 
Figure 1. (a) and (b) Average gas-phase mass transfer coefficient and absorption efficiency as a 

function of velocity at different rotating speed of 1.25ml/min liquid volumetric flowrate 

Conclusion 

The effect of centrifugal force on gas-liquid contact operation in an FFMR was 

studied. Increase in rotating speed of the system was found to have favored the 

absorption efficiency of the process with consequent increase in mass transfer 

coefficients. At the highest rotating speed of 165 RPM investigated for the gas phase, 

up to 85 % absorption efficiency was attained. 
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ENABLING THE EVALUATION OF MASS TRANSFER  
PROPERTIES OF 3D PRINTED CATALYST SUBSTRATES WITH 

RICH H2 OXIDATION 

Federico S. Franchi, Matteo Ambrosetti, Mauro Bracconi,  
Riccardo Balzarotti, Gianpiero Groppi, Enrico Tronconi 

Dipartimento di Energia, Politecnico di Milano, Via La Masa, 34, Milano, Italy, 
enrico.tronconi@polimi.it 

In recent years, the need to comply with more and more stringent environmental 

legislations is pushing towards the development of new, high performing catalytic 

solutions. The freedom in catalyst supports design associated with the development 

of 3D printing technologies may enable the manufacture of substrates that exhibit 

better performances than state of the art honeycomb monoliths in terms the tradeoff 

between gas/solid mass transfer and pressure drops [1]. In view of the large number 

of structures that can be manufactured by 3D printing, an efficient screening 

methodology for the evaluation of these properties is required. Among 3D printing 

techniques, stereolithography apparatus (SLA) shows the highest precision and 

accuracy, being able to print samples with geometrical details below 0.2 mm in size. 

The technique is used to print polymeric materials, that are characterized by 

moderate resistance to temperature. In previous works [2-4], CO oxidation over noble 

metal catalysts was used to drive the system to the diffusion limited regime in order 

to evaluate external mass transfer performances. However, the external mass 

transfer regime is usually reached for temperatures above 300 °C which are not 

compatible with the resin substrate. To meet the temperature limits of the resin 

samples, H2 oxidation under rich conditions is a good candidate. SLA 3D printed 

samples have been used for other process intensification devices (e.g. static mixers), 

however, no catalytic applications have been yet reported in the literature. In this 

work, we propose the use of catalytically active 3D printed resin samples for the 

investigation of external mass transfer properties by running rich H2 oxidation 

catalytic tests.  

POCS samples (cylinders, id = 9 mm, length = 15 mm) are printed using 

FLHTAM01 high-temperature (HT) resin (HDT@0.45MPa = 289 °C) and a Form2 SLA 

3D printer. The finished samples are coated with a 3 % Pd/CeO2 slurry and the 

excess slurry is removed by spin-coating. Samples are flash dried in air at 200 °C for 

3 min and the procedure is repeated until the target loading of 15 gcat/L is obtained. 
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INFLUENCE OF THE GAS PHASE ON HYDRODYNAMICS AND GAS 
TRANSFER IN A STIRRED TANK UNDER ANAEROBIC DARK 

FERMENTATION CONDITIONS 

Trad Z.1,2, Rezazadeh N.1, Danican A.1, Ursu A.-V.1, Fontanille P.1,  
Fontaine J.-P.1, Vial Ch.1 

1Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 
CLERMONT-FERRAND, France, christophe.vial@uca.fr 

2Université Clermont Auvergne, LabEx IMobS3, F-63000 CLERMONT-Fd, France 

Dark fermentation (DF) is an anaerobic process similar to anaerobic digestion (AD) 

in which methanogenesis has been suppressed. Thus, it is able to convert organic 

waste into a biogas enriched in hydrogen, and a liquid digestate rich in volatile fatty 

acids. This process is environment friendly, but economic sustainability can be 

reached only if power input for pumping and mixing is low, below 8−10 W/m3 [1]. 

Mixing has already been shown to play a key role on the performance of DF, but 

the effect of the gas phase remains unknown in mechanically-stirred fermenters up to 

now. Even though biogas production rate remains low in DF, usually below  

2.5 10–2 VVM [2,3], far below than in aerobic reactors usually operated at 1 VVM or 

more, this value is, however, far higher than in AD which is around 15 10–3 VVM. The 

objective is, therefore, to investigate the effect of the gas phase on hydrodynamics and 

mixing in a mechanically-stirred anaerobic fermenters under the conditions of DF. 

In this study, the respective effects of fluid rheology, rotation speed (N) and gas 

flow rate (G) were analyzed using Newtonian and non-Newtonian shear-thinning 

model fluids, covering flow conditions from laminar to turbulent in a 2-L cylindrical 

baffled bioreactor equipped with dual Rushton turbines. Image analysis was used to 

determine bubble size and the spatial distribution of the gas phase; the velocity and 

turbulence local flow fields were measured using PIV, fluorescent tracer particles with 

a specific treatment to distinguish both phases; PLIF was applied to derive mixing 

time; also, the volumetric gas liquid-mass transfer (kLa) was estimated locally using a 

Clark electrode. Experimental results were also compared to available data on 

single-phase flows measured in the same bioreactor under the same conditions.  

Experimental data highlighted that rheology plays a key role on bubble size, as 

coalescence phenomena were prevented by shear-thinning fluids. Conversely, the 

shear-thinning behavior enhanced spatial heterogeneity which emerged not only from 

PIV data by the generation of caverns when the flow index decreased, but also by a 
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MODELING OF INTERNAL TRANSPORT LIMITATIONS IN 
CATALYTIC PARTICULATE FILTERS 

Jan Němec, Petr Kočí 

University of Chemistry and Technology, Prague, Dept. of Chemical Engineering, 
Technická 5, Prague 166 28, Czech Republic, e-mail: petr.koci@vscht.cz 

A catalytic particulate filter used for automotive exhaust gas aftertreatment is 

traditionally described by so-called 1D+1D model that uses 1D plug flow inside the 

channels and 1D transport and reactions across the filter wall [1]. A recently 

developed 3D model may be utilized for micro-scale simulations of gas flow, diffusion 

and reactions inside the catalytic filter wall [2]. The detailed model works with a 

3D reconstructed porous medium which represents the realistic morphology of pores 

and catalytic coating obtained from X-ray microtomography. The effective properties 

of the wall, such as permeability and filtration efficiency, are received by spatial 

averaging of the computed 3D profiles. These effective values are applied as input 

parameters for the overall 1D+1D model [1]. 

The reactions occur only in the zones coated with catalytic material, which is 

located inside large macropores of the filter wall. Despite the convective transport of 

reactants through the wall, part of the active sites inside the coated domains is still 

accessible only by slow diffusion through small internal pores in the coating, because 

gas flows predominantly through large open pores. In this paper we present a 

methodology and comparative study for the prediction of internal limitations in 

catalytic filters with various spatial distribution of the catalyst inside and/or on top of 

the filter wall. 

To describe the extent of this diffusion limitation in the 1D+1D model, we use a 

modified concept of the effectiveness factor / , where  is the observed 

reaction rate and  is the reaction rate without any diffusion limitation. The 

effectiveness factor can be calculated from Thiele modulus which involves 

characteristic diffusion length, reaction rate constant and diffusivity [3]. In order to 

obtain the estimate of the diffusion length that characterizes the coating distribution in 

the wall, we first perform detailed 3D pore-scale simulation in the reconstructed filter 

wall and calculate spatially averaged 1D concentration profile over the wall [2], and 

then fit the value of the characteristic diffusion length in the 1D model to match this 

profile [4]. The value of the diffusion length characterizes accessibility of the catalytic 



coating

catalyti

Flow p

To 

factors 

catalyti

lean m

corresp

compa

kinetics

Light-o

predicte

realistic

Referen

[1] M. S
rem

[2] P. K
D. T
auto

[3] E. W
Che

[4] R. G
reac
vol. 

[5] M. M
Lan
vol. 

 

g inside the

c sites are

rofile through
from de

demonstr

of catalyti

c filter sam

mixture w

ponding ch

re the ana

s: pseudo-

ff curves f

ed and th

c operating

nces 

Schejbal, M. 
oval,” Chem

Kočí, M. Isoz
Thompsett, “3
omotive exha

W. Thiele, “R
emistry, vol. 3

Greiner, T. P
ctive flow at t
378, 2019. 

Morbidelli an
gmuir–Hinsh
38, no. 2, pp

e filter wall

e). 

h the wall str
etailed 3D mo

rate and v

ic CO oxid

mples und

with oxyge

haracterist

alytical rel

-first orde

for catalyt

he impact 

g condition

Marek, M. K
m. Eng. J., vo

, M. Plachá, 
3D reconstru
aust gas afte

Relation betw
31, no. 7, pp

rill, O. Iliev, B
the microsca

d A. Varma, 
helwood kine
p. 289-296, 1

l (the large

ructure obtai
odel 

validate th

dation are c

er various

en excess

ic diffusion

lations of 

r, pseudo-

ic filters w

of interna

ns is discus

Kubíček, and 
l. 154, pp. 21

A. Arvajová,
uction and po
ertreatment,” 

een Catalytic
. 916-920, 1

B. Setten, an
ale: Particula

“Isothermal 
etics: Connec
1983. 

OP-I-33

103 

er is the di

 

ned 
ave

his approa

calculated 

s operating

s, high o

n lengths 

Thiele mo

-second o

with varyin

l diffusion

ssed. 

P. Kočí, “Mo
19-230, 2009

, M. Václavík
ore-scale mo
Catal. Today

c Activity and
939. 

nd M. Votsme
ate filters with

diffusion-rea
ctions with ne

3 

ffusion len

CO convers
raged profile

from the

ach, Thiele

for severa

g condition

r low CO

are evalua

odulus for

order and 

g distribut

limitations

odelling of di
9. 

k, M. Svobod
odeling of coa
y, vol. 320, p

d Size of Par

eier, “Tomog
h wall integra

action in a sla
egative first-

ngth, the le

ion profiles i
es from the 3
e improved 1

e moduli a

al different 

s (stoichio

O concen

ated. We f

different 

Langmuir-

ion of cata

s on the c

esel filters fo

da, E. Price, V
ated catalytic
pp. 165-174, 

rticle,” Indust

graphy based
ated catalyst,

ab catalyst w
order kinetic

ess access

n wall – spat
D model and
D+1D mode

and effect

 structures

ometric mix

ntration) a

further ap

types of r

-Hinshelwo

talytic coat

conversion

or particulate

V. Novák, an
c filters for 
2019. 

trial and Eng

d simulation 
,” Chem. Eng

with bimolecu
cs,” Chem. E

sible the 

tially 
d profiles 
l 

iveness 

s of real 

xture or 

and the 

ply and 

reaction 

ood [5]. 

ting are 

n under 

es 

nd 

gineering 

of 
g. J., 

ular 
ng. Sci., 



OP-I-34 

104 

HEAT TRANSFER ANALYSIS ON -Al2O3 AND TiO2 AS SUPPORT 
MATERIALS FOR THE OXIDATIVE DEHYDROGENATION OF 

ETHANE (ODH-C2) IN AN INDUSTRIAL WALL-COOLED PACKED 
BED REACTOR 

Romero-Limones A.1,2, Poissonnier J.2, Thybaut J.W.2, Castillo-Araiza C.O.1 

1Laboratory of Catalytic Reactor Engineering applied to Chemical and Biological 
Systems, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, 09340, 

Mexico City, Mexico. E-mail: Alejandro.RomeroLimones@UGent.be 
2Laboratory for Chemical Technology, Ghent University, Technologiepark 91,  

B-9052 Ghent, Belgium 

Packed bed reactors with low tube to particle diameter ratio (dt/dp < 10) are, on 

the one hand, industrially used to carry out highly exothermic reactions, such as the 

selective oxidation of o-xylene to produce phthalic anhydride [1], selective oxidation 

of ethylene to ethylene oxide [2], among others selective oxidations [3]. On the other 

hand, this type of reactors are of great interest for carrying out promising reactions 

such as the oxidative dehydrogenation of ethane (ODH-C2) to produce ethylene [4], 

due to its low environmental, energetic and economic impact compared to the 

conventional process to produce this olefin, i. e., thermal cracking.  

Due to the exothermicity of this type of reactions, mainly the total oxidations, the 

geometrical configuration, low dt/dp, and non-porous support, i. e., -Al2O3 [5] and TiO2 

[1], favors the dissipation of the reaction heat. Otherwise, higher hot spots can be 

obtained in the bed, which could lead to a runaway situation as well as an irreversible 

deactivation of the catalyst. Although there are many works in literature trying to 

characterize the heat transfer mechanisms within this type of packed reactors with low 

dt/dp [4], a lot of uncertainties remain about their modeling. This limits both the design 

of new processes and the optimization of the existing ones. Some of the main 

drawbacks are: high statistical correlation between the estimated effective heat transfer 

parameters, plug flow velocity profile rather than a velocity field which influence on 

local temperatures. Secondly, the description of steady state rather than transient state 

observations. Thirdly, there is no clarity on the role of the radial velocity component on 

heat transfer mechanisms. Yet among other concerns remain [6]. 

This work focuses on the analysis of heat transfer with and without reaction in a wall-

cooled packed bed reactor with low dt/dp, aimed to carry out the ODH-C2 over a Ni-

based material externally deposited on two types of supports, i. e., -Al2O3 and TiO2 
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CO2 METHANATION AND REVERSE WATER GAS SHIFT REACTION.  
KINETIC STUDY BASED ON IN-SITU SPATIALLY-RESOLVED 

MEASUREMENTS 

Jose A. Hernandez Lalinde1, Pakpong Roongruangsree1, Jan Ilsemann2, 
Marcus Bäumer2, and Jan Kopyscinski1 

1Department of Chemical Engineering, McGill University, 3610 University Street, 
Montreal, Canada, jose.hernandezlalinde@mail.mcgill.ca 

2Institute of Applied and Physical Chemistry, University of Bremen, Leobener Str.6, 
28359 Bremen, Germany 

Introduction 

The design of CO2 methanation reactors for the Power-to-Gas process requires a 
detailed understanding of the reaction mechanism and its corresponding kinetic 
description. In-situ spatially-resolved measurements of the gas composition profile 
and catalyst surface temperature enable the collection of a much larger set of kinetic 
data compared to the traditional steady-state packed bed reactors with end-of-pipe 
measurements as they combine differential and integral methods.  

Experimental and Modeling 

Ordered mesoporous nickel-alumina [1] (~30 wt % Ni/Al2O3) catalysts were 
synthesized, coated onto a metal plate, and placed in the bottom of a new optically 
accessible channel reactor with spatially resolved capabilities for kinetic data 
acquisition [2,3]. Kinetic experiments were conducted from 320 to 420 °C, 1.2 to 
7.3 barabs, with different reactants (CO2, H2) and products (CH4, H2O, CO) partial 
pressures. The catalyst surface temperature with a resolution of 9 data points per 
mm2 was determined via IR thermography, while the gas composition was 
determined via a movable sample capillary (0.5 mm diameter). A one dimensional 
reactor model in combination with the Bayesian approach was used to estimate 
kinetic parameters of 20 proposed Langmuir-Hinshelwood rate expressions for the 
CO2 methanation and reverse water gas shift reaction (RWGS) assuming different 
rate-determining steps. Model discrimination was based on posterior probability 
share as well as on Diffuse Reflectance Infrared Fourier Transform Spectroscopy 
(DRIFTS) experiments to identify adsorbed surface species. 

Results and Discussion 

More than 21,000 data (gas composition profiles) were collected, which allowed 
for a detailed kinetic analysis. The model with the highest probability share follows a 
hybrid mechanism in which the first C–O bond dissociation of the adsorbed CO2* to 
CO* is rather fast, while the second C–O bond cleavage is hydrogen assisted (COH* 

mailto:jose.hernandezlalinde@mail.mcgill.ca
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complex) and the slowest step (COH* + H* ↔ CH* + OH*). Water was assumed to be 
adsorbed as a hydroxyl species (OH*), while methane did not influence the reaction. 
The best fit model could correctly predict the behavior over the complete range of 
temperature, pressure (Fig. 1 left) as well as for direct biogas methanation. The 
addition of the RWGS and the use of spatially-resolved kinetic data represents nicely 
the CO formation via RWGS at the beginning and after 20 mm the subsequent CO 
conversion. Time-resolved DRIFTS measurements validated the assumed reaction 
mechanism by confirming the presence of COH*, OH* as well as surface formates as 
depicted in Fig. 1 right.  

 

Fig. 1. Left: Measured (symbols) and calculated (solid line) gas species concentrations.  
Right: Time-resolved DRIFTS collected at 350 °C 

The activation energy of the CO2 methanation and RWGS reactions are  
79.7 kJ mol–1 and 194.7 kJ mol–1, respectively. The value for the CO2 methanation is 
similar to literature [4], whereas the RWGS differs.  

Conclusions 

In this work, a comprehensive set of kinetic data was collected in an optical 
catalytic plate reactor with spatially resolved measurement capabilities. By applying a 
one-dimensional reactor model, the kinetic parameters of the CO2 methanation and 
RWGS were estimated, and the assumptions on the RDS were validated via 
spectroscopy. 
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IMPROVED CATALYTIC PLATE REACTOR (CPR) DESIGN FOR HIGH 
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Introduction 

Kinetic experiments commonly use small laboratory packed bed reactors with 
end-of-pipe measurements. Utilizing an integral reactor like our recently developed 
optically accessible catalytic plate reactor (CPR) (40 x 100 x 5 mm) with spatially 
resolved measurement capability allows for collecting high-resolution gas 
composition and catalyst surface temperature profiles along the reactor axis via a 
small movable sampling capillary and short-wave infrared camera, respectively [1]. 
The CPR represents a reactive flow between two parallel plates (i.e., catalyst coated 
bottom plate and quartz glass top plate). The goal of this work is to understand the 
hydrodynamic, and mass and heat transfer effects on the kinetic data generated and 
use it to develop design guidelines for the next generation CPR. 

Experimental and Modeling 

Inlet manifold, sampling capillary design and reactor aspect ratio (Width/Height) 
have a significant impact on the internal flow phenomena. The effect of each is 
independently investigated using the catalyticFOAM [2] framework; a CFD numerical 
solver based on OpenFOAM able to couple the solution of Navier Stokes with mass 
and energy balance coupled with detailed modeling of heterogeneous chemistry. A 
3D reactive CFD model of the CPR reactor with CO2 methanation kinetics is 
developed and validated against a comprehensive set of experimental data collected 
over a broad range of operational conditions (280-420 °C, 1.2-7.3 barabs, 50-150 ml 
(STP)/min). Two inlet manifold configurations (i.e. centrally located inlet and side 
inlet) are compared. 

Results and Discussion 

The mesh independent CFD model predictions for the final CO2 conversion 
compare against experimental data with <1 % error and species molar concentration 
shows good agreement along the length of the reactor (Fig. 1 (a)). The validated 

mailto:varun.surendran@mail.mcgill.ca


OP-I-36 

109 

CPR model is used to perform sensitivity study over a range of temperature (300-
400 °C) and pressure of (1.2-7 barabs). 

 
Fig. 1. (a) Measured vs CFD model values for axial gas composition profiles.  

(CPR experiments:150 mlN/min, 360 °C, 1.2 bar and H2/C = 5) (b) velocity contours and local velocity 
vectors on a horizontal plane in the CPR reactor. (reactive CFD model:150 mlN/min) 

Among the three channels present in the inlet manifold, the central channel has 
the least flow due to the reduction in flow area by the passing capillary. The rapid 
increase in area at the end of the inlet manifold results in recirculation of flow in this 
region (Fig. 1 (b)). This secondary flow is present at all the investigated flowrates and 
it dissipates in the initial 20 mm into the reactor for the 150 ml (STP)/min case. This 
recirculation is minimized by reduction in aspect ratio of geometry and better flow 
distribution in the inlet manifold.  

Conclusions 

In this work, a set of design guidelines were developed for the next generation 
CPR including the optimal width to length ratio for studying fast reactions, inlet 
manifold design and sampling capillary design. These insights were developed using 
CFD modeling studies of the CPR reactor that were validated with the data collected 
in an optical catalytic plate reactor with spatially resolved measurement capabilities.  
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Introduction 

The design of a photocatalytic reactor requires a model accounting for the 

interaction among kinetics, mass transport and radiative transfer. The key variable 

relating them is the Local Volumetric Rate of Energy Absorption (LVREA) [1]. 

However, its reliability depends on the adequate determination of the suspended 

catalyst optical properties, such as: the specific extinction coefficient, ∗; the 

scattering ratio, ; the Henyey-Greenstein phase function form parameter, g [2]. A 

study that allows the determination of the optical properties grants, in turn, the 

possibility to relate and understand the interaction among kinetics and radiative 

transfer. It is in this sense, that the kinetic evaluation of the production of hydroxyl 

radicals (OH•) and holes (h+), species that appear when the catalyst is excited, allows 

the connection between the amount of light absorbed locally and the production of 

these species. By understanding this relation it is possible to assess a reaction and 

with the obtained information, aid the elucidation of a possible reaction mechanism 

and the determination of the reaction rates. In this regard, in this work we present a 

theoretical and experimental methodology that allows the kinetic evaluation of the 

production of photocatalytic intermediate species such as h+ and •OH, coupled with 

the radiative transfer for graphene oxide (GO) as a promising material for visible light 

absorption. Results are compared to those obtained for the state-of-the-art 

photocatalyst reference, TiO2 Degussa P25.  

Materials and Methods 

Degussa P25 TiO2 is used as reference material while graphene oxide (GO) is 

prepared through the oxidation of graphite powder (nanoparticles) via a modified 

Hummers method [3] that removes the usage of sodium nitrate (NaNO3). An in-house 

developed methodology, where macroscopic light measurements are utilized for 

independent optical properties determination, is used. While the kinetic evaluation of 
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DEVELOPMENT OF A MACROSCOPIC MODEL  
FOR HYDRODYNAMICS IN FIXED BED REACTORS  

WITH LOW dt/dp RATIO 

Roel Hernandez-Rodriguez1, C. O. Castillo-Araiza2, J. Alberto Ochoa-Tapia1,  
E. Hernandez-Martinez2, A. Hernandez-Aguirre1 

1Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma 
Metropolitana-Iztapalapa, Av. R. Atlixco 189, México DF, 09340, Mexico, 

iqrhr@hotmail.com 
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Industrial wall-cooled fixed bed reactors (FBR) with low tube-to-particle diameter 

ratio (dt/dp<10) have been widely studied in academia and industry as their 

application for carrying out highly exothermic reactions of interest for the 

petrochemical industry [2,3]. Due to the high computational costs of the local scale 

description, modeling of this type of reactor uses effective medium equations or 

pseudo-homogenous equations expressed in terms of effective medium coefficients. 

In particular, for momentum transfer, these models are based on the semi-

deterministic Darcy-Brinkman-Forchheimer (DBF) equation, in which the effective 

coefficients are determined out of a parameter estimation strategy based on a proper 

experimental design and regression analysis [4]. Nevertheless, the experimental 

cost, regression limitations, and the limited operational range where the effective 

coefficients present confidence lead to the proposal of alternative strategies to 

determine these effective coefficients.  

This work aims at developing effective medium equations by using the volume 

averaging method (VAM) [1], for describing momentum transfer in a FBR presenting 

a low dt/dp ratio and accounting for the incompressible single-phase flow. The 

resulting average equations contain terms of position-dependent effective medium 

coefficients, i.e., a total inertial tensor ( J ) and an apparent permeability tensor ( H ). 

These coefficients are herein obtained by solving the associated local closure 

problems. In addition, it is worth mentioning that the average equations account for 

the second Brinkman’s correction that arises by considering the spatial variations of 

the void fraction. 

Macroscopic equations are applied during the hydrodynamic description of an 

industrial-scale FBR packed with an arrangement of spherical pellets, presenting a 
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dt/dp = 3.09, and operated at a particle Reynolds number (Rep) from 700 to 1400. The 

effective coefficients involved in the equations were computed by solving the 

associated local closure problem and from direct numerical simulations (DNS) in a 

representative element of volume of the FBR. For the sake of brevity, herein, we only 

present results at Rep = 1400. Fig. 1 displays the radial variation of the apparent 

permeability and the void fraction determined out of DNS. The inclusion of these 

coefficients in the effective medium equations allowed the prediction of the average 

velocity profile in the FBR, vide Fig. 2; this velocity profile was, to this end, compared 

to that profile obtained out of DNS and the conventional model (DFB). It is worth 

noting that the developed average equations led to better results than the DBF model 

when comparing their predictions with those of obtained out of DNS. Similar results 

were obtained at others Rep. As conclusion, we developed a hydrodynamic model, 

without the need of estimating effective transport parameters, able to capture the 

physical phenomena involved in a FBR with low dt/dp ratio. 

Fig. 1. Radial variations of the permeability and 
void fraction in the FBR obtained from DNS and 
volume integration of the geometry, respectively 

Fig. 2. Comparison of the axial average velocity 
profile in the FBR obtained from DNS, 
conventional DBF equation, and VAM 
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A DNS BASED EFFECTIVE MEDIUM MODEL FOR COMPRESSIBLE 
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C.O. Castillo-Araiza1* 
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Fixed bed reactors (FBR) are normally used in ca. 70 % of industrial applications. 

The wall-cooled FBR with low tube to particle diameter ratio (dt/dp<10) is used to 

carry out highly exothermic reactions of interest for the petrochemical industry. The 

low dt/dp ratio favors heat dissipation along the radial coordinate of the bed; however, 

it also generates prolongate changes in void fraction and local velocity, which in turn 

influences local mass and heat transport, and hence, kinetics and catalyst 

deactivation [1,2]. Computational Fluid Dynamics (CFD) has been employed as a tool 

to investigate the fluid flow and heat transfer in fixed beds with low dt/dp ratio. 

Nevertheless, when coupled to the other transport phenomena, reaction, and catalyst 

deactivation, there is a significative increase in the computational time; in fact, to best 

of our knowledge, CFD has only be applied to model a FBR with lower dimensions 

than those involved in an industrial system [3,4]. On the other hand, effective medium 

models are used in the description of FBR, nevertheless, all mechanistic information 

is captured through effective descriptors, or effective parameters, accounting for the 

magnitude of the different associated transport phenomena. In most of publications 

related to hydrodynamics in FBR, incompressibility of the fluid is neglected, and 

effective parameters are determined out of experiments. This work is aimed at 

developing an effective hydrodynamic model accounting for fluid compressibility in a 

FBR with a dt/dp = 3.1. The development of this model makes use of local average 

information derived from direct numerical simulation (DNS). The packed bed consists 

of a tube of 10 cm with an internal tube diameter of 2.46 cm. This tube is packed with 

spherical pellets of 0.8 cm of diameter. Compressible Navier-Stokes equations used 

during DNS. On the other hand, the effective medium model developed in this work is 

given by the following equations: 
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CONVERSION OF METHANE INTO HYDROGEN OR OLEFINS:  
A STUDY EVALUATING DIFFERENT REACTORS 

S.R.A. Kersten 

University of Twente, The Netherlands 

In this presentation I will discuss two investigations concerning the conversion of 

methane: i) reaction over -Al2O3 surfaces, ii) reaction in a pulsed compression 

reactor (PCR). In these reactors essentially the same reaction proceeds. Though, in 

the PCR the reaction is terminated at C2H4 while over the -Al2O3 it is driven to 

completion.  

Reaction over -Al2O3 surfaces 

The pyrolytic conversion of methane for the production of hydrogen and carbon 

was investigated over nonporous -Al2O3 surfaces in the range of 900-1300 °C. Two 

devices were used: i) a single particle reactor to determine the carbon deposition rate 

at various temperatures and ii) a fixed bed in which both methane conversion and 

carbon deposition were measured. It was observed that at 1000 °C and below, the 

selectivity towards carbon (and hydrogen) was initially low over fresh -Al2O3 (e.g. 

38 % at 250 s reaction time), increasing to 100 % over time. Methane conversion 

was constant at 20 % during this period. These observations point towards the 

presence of an activation process for the formation of carbon and hydrogen from the 

intermediates products (e.g. benzene) of methane pyrolysis. A temperature 

dependent maximum in carbon loading was observed. When this maximum carbon 

loading was reached, methane conversion also stopped completely, indicating 100 % 

selectivity towards carbon and hydrogen. Two kinetic models for carbon deposition 

were derived and applied. After parameterization of these models using single 

particle data, they were able to predict carbon growth and CH4 conversion as function 

of temperature, specific bed area, carbon loading and gas composition in the new 

data set from the fixed bed. 

Pulsed compression 

Pulsed compression is introduced for the conversion of methane, by pyrolysis, 

into ethylene. At the point of maximal compression temperatures of 900 to 1620 K 

were reached, while the initial and final temperature of the gas did not exceed 523 K. 

By the use of a free piston reactor concept pressures of up to 460 bar were 
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measured with nitrogen as a diluting gas. From 1100 K onwards methane conversion 

was measured. By increasing the temperature, the mechanism of pyrolytic methane 

conversion, being subsequent production of ethane, ethylene, acetylene, ..., 

benzene, and ultimately tar/soot, was clearly observed. Without hydrogen in the feed, 

the attainable operating window (C2-selectivity vs. methane conversion) observed 

was similar to other catalytic oxidative and non-oxidative coupling processes. With 

hydrogen, in a first attempt to optimize the product yield, 24 % C2-yield (62 % 

ethylene selectivity, 93 % C2-selectivity) at 26 % conversion was reached without 

producing observable soot. It is worthwhile to explore pulsed compression further 

because it does not require a catalyst and therefore, does not deactivate over time 

and it operates at low reactor temperature. 
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KINETIC INSIGHTS INTO CO2 ACTIVATION VIA REVERSE WATER - 
GAS SHIFT ON Rh CATALYSTS 

Luca Nardi, Matteo Maestri 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, via La Masa 34, Milano, Italy 

matteo.maestri@polimi.it 

Nowadays, the CO2 in the atmosphere is the major factor causing global 

warming. The concentration of carbon dioxide highly increased in the last decades 

due to anthropogenic emissions, causing an imbalance of the natural carbon cycle 

[1]. Hence, governments are adopting strict policies to lower CO2 emissions. A 

promising route is the reduction of the emitted carbon dioxide using green hydrogen, 

as a co-reactant, getting rid of the emissions caused by processes that are difficult to 

replace. In this context, the reverse water-gas shift (RWGS) reaction is a valid 

alternative for the consumption of carbon dioxide, producing CO, a fundamental 

building block of the chemical industry. Moreover, the RWGS reaction is involved in 

all the systems where the feed is composed of high concentrations of CO2 and H2 

(e.g. CO2 to methanol, CO2 to methane). The RWGS reaction can occur through  

3 main reaction mechanisms: (i) CO2 dissociation pathway, (ii) COOH* pathway,  

(iii) HCOO* pathway. This reaction has been and is widely studied by researchers, 

but there is still debate concerning the actual reaction mechanism and how the 

operating conditions affect the prevalent mechanism [2]. 

The kinetic mechanism of the reverse water-gas shift reaction on 4 wt % Rh/ 

-Al2O3 catalyst was investigated, in a wide range of operating conditions at ambient 

pressure. The catalytic tests were performed in an annular reactor with proper design 

to be in a chemical regime. The effects of the reactants (CO2 and H2) and products 

(CO and H2O) concentrations were studied (Figure 1) and experiments were 

performed at different temperatures to calculate the apparent activation energy 

(T = 600-750 °C). The reaction rate was calculated according to the differential 

method. RWGS reaction rate was strongly influenced by CO2 partial pressure with a 

linear dependence on CO2 until the approach to the stoichiometric ratio of the RWGS 

reaction CO2 / H2 = 1, after which the dependence is still linear but with a smaller 

slope (Figure 1a). The rate was mildly influenced by H2 partial pressure, with a linear 

dependence on CO2 until the approach to the stoichiometric ratio of the RWGS 
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Accurate modeling of the decoking process can help to limit the duration of this 

procedure, as well as to assess the influences of 3D reactor geometries. A 

computational framework is presented which includes decoking surface reactions 

and dynamic mesh generation. As a proof-of-concept, a comparison of decoking of a 

bare, ribbed and finned reactor in a single-pass furnace is presented, for an industrial 

inlet mixture as well as for pure air. The ribbed geometry requires significantly less 

heating compared to the bare and finned geometries due to the enhanced heat 

transfer induced by the ribs. However, the risk of spalling is increased and due to 

lower process gas-coke interface temperatures, the decoking rate is reduced, 

resulting in an overall longer decoking time. The finned reactor requires a longer 

decoking time compared to the bare tube as well, due to the non-uniform coke 

thickness around the circumference, resulting in a lower average decoking rate. 

Additionally, due to significantly altered thermal gradients at the start of decoking 

compared to the end of cracking, the potential to induce cracks in the reactor tubes is 

increased. Simulations of pure air decoking resulted in a temperature peak 

exceeding the maximal allowable TMT of all currently available reactor materials and 

a 30K higher temperature at the inside of the reactor metal compared to the outside, 

relatively unaffected by the decoking time and axial coordinate. This poses risks for 

decoking procedures incorporating a pure air step because the TMT overshoot might 

not be observed in industrial practice, resulting in a deterioration of the reactor 

material. The insights obtained in this work can be used to further optimize decoking 

procedures in industrial steam cracking reactors. 
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MATHEMATICAL MODELING OF AMMONIA OXIDATION TO 
NITROUS OXIDE IN MICROCHANNEL REACTOR 

Ignatov A.S.1,2, Vernikovskaya N.V.1,2, Chumachenko V.A.1 

1Boreskov Institute of Catalysis SB RAS, Pr. Ak. Lavrentieva 5,  
Novosibirsk 630090, Russia, vernik@catalysis.ru 

2Novosibirsk State Technical University, Novosibirsk 630073, Russia 

The best-known uses of nitrous oxide are as a medical anesthetic and analgetic. 

In the food industry, nitrous oxide is a highly effective propellant for dispensing fatty 

liquids. Another popular use of nitrous oxide is a fuel additive which improves engine 

performance. Due to its high reactivity, nitrous oxide is also used in the synthesis of 

important chemicals, phenol in particular [1]. For on-purpose production of nitrous 

oxide, a method of catalytic oxidation of ammonia over highly selective catalyst was 

developed [2]. Reaction proceeds with a considerable heat release; thus, to ensure 

the process safety and the catalyst thermal stability, an efficient heat removal from 

the reaction zone is necessary. Turbulent fluidized bed reactor [3] and fixed-bed 

tubular reactor [4,5] proved its efficiency but were limited in the unit productivity.  

In recent years, a number of scholar studies was devoted to microchannel 

reactors (MCR). Since MCRs are well suited for highly exothermal heterogeneous 

catalytic processes [6,7], these devices would be the right choice when it comes to a 

small-scale production of nitrous oxide. This work presents a theoretical study of 

selective ammonia oxidation in a MCR over Mn/Bi/Al mixed oxides catalyst [2]. This 

catalyst provides a high conversion of ammonia mainly to nitrous oxide, with an 

almost complete absence of nitrogen oxides NO, NO2. 

MCR under study comprises a metal disc 10mm in height, 52 mm in diameter 

with parallel straight-through channels 1mm in diameter filled with catalyst. The 

mathematical model takes into account thermal conductivity of the bulk disk, axial 

and radial heat and mass transfer inside the reactor channels, heat transfer between 

the disk and the channels, catalytic reactions accompanied by a change in reaction 

volume inside the channels. Kinetic equations describing both the rate of nitrous 

oxide formation and the total rate of by-products formation, as well as the 

corresponding kinetic parameters, were taken from [5]. 

In mathematical modeling, we varied the thermal conductivity of the bulk disk  = 

70…205 J/(m s K), temperature at the edge of the disk Tedge = 340…370 °C and at 
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the inlet of channels Tin = 280…370 °C, linear velocity u = 0.005…0.02 m/s, pressure 

P = 0.1…0.3 MPa, inlet concentration of ammonia СNH3 = 4…20 vol. %, and water 

СH2O = 10…40 vol. %, СNH3/СO2 = 1. The effect of the parameters on ammonia 

conversion (XNH3) and nitrous oxide selectivity (SN2O) at the outlet of reactor, on the 

maximum temperatures in the central (Tc
max) and peripheral (Tp

max) channels was 

studied. The set of differential equations was solved using COMSOL Multiphysics. 

The adequacy of the MCR model was checked in [6] by fitting the experimental 

data on methanol to formaldehyde oxidation with simulation. The predicted data on 

ammonia oxidation to nitrous oxide were compared in [8] with the experimental 

results. Those data were obtained in a tubular reactor which can be considered as an 

analogue of the separate MCR channel.  

The temperature distribution in the MCR shows (Fig. 1a) that the difference 

between Tc
max and Tp

max is no more than 1 °C, which indicates a highly efficient heat 

removal from the reaction zone. Due to a small temperature difference, the outlet 

XNH3 changes negligibly as well (Fig. 1b). SN2O is almost constant at the channels 

outlet and is equal to 90.6 %. A set of parameters has been determined that allows 

achieving SN2O > 90 % at XNH3 > 99 %. In this case, the difference in Tmax between 

channels does not exceed 2 °C, while the difference in Tmax and Tedge is no more than 

5.5 °C. The values of parameters are as follows: λ = 100…170 J/(m s K), Tin = Tedge = 

360…370 °C, u = 0.005 m/s, P = 0.2 MPa, СNH3 = 4…20 vol. %, СH2O = 10 vol. %. 

 

 
Fig. 1. Temperature distribution in the MCR (a); 
NH3 conversion at the outlet of channels (b). λ = 
140 J/(m s K), Tin = Tedge = 360 °C, u = 0.005 m/s, 
P = 0.2 MPa, CNH3 = 12 vol. %, CH2O = 10 vol. %. 

Mathematical modeling of ammonia oxidation to nitrous oxide in MCR used the 

model that takes into account processes both in the bulk disk and inside the reactor 

channels. Within the range of parameters found, the MCR operates in almost 

isothermal conditions; ammonia conversion and nitrous oxide selectivity are higher 

than 99 and 90 %, respectively. MCR can be operated at the inlet СNH3 as high as 
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20 vol. % with no catalyst overheating; herewith the yield of nitrous oxide per unit 

volume of catalyst shall be 5 times greater than in a conventional tubular reactor.  
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CFD MODELING OF THE EVAPORATION, AUTO-IGNITION AND 
COMBUSTION OF DROPLETS OF FPBO SURROGATE 

COMPONENTS 

Abd Essamade Saufi1, Alessio Frassoldati1, Tiziano Faravelli1, Alberto Cuoci1, 
Raffaella Calabria2

, Fabio Chiariello2, Patrizio Massoli2 
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Fast pyrolysis bio-oils (FPBO) are black-brownish liquids obtained from the fast 

pyrolysis of vegetable biomass [1,2]. The vapors are condensed, obtaining a fuel 

which is inherently different from petroleum-based fuels, both in terms of physical 

and chemical properties. It is a mixture of hundreds of components, for which a 

surrogate mixture is therefore necessary to efficiently describe its reactivity. 

Mimicking both the physical and chemical properties of bio-oils, a nine components 

mixture has been defined (water, acetic acid, ethylene glycol, glycol aldehyde, 

vanillin, HMW-lignin, levoglucosan, 2,5-dimethylfuran and oleic acid) as a part of the 

European project Residue2Heat [3]. The surrogate mixture and the real bio-oil have 

been experimentally compared in terms of evaporation rate and combustion 

characteristics: the experimental analyses concerned the evaporation and 

subsequent combustion of a single isolated droplet suspended on a thin 

thermocouple in a controlled combustion chamber [4]. Recently, in our previous work 

we successfully simulated this experimental device: focusing on the sole vaporization 

process, we used the DropletSMOKE++ code [5] to numerically describe the 

evaporation of a suspended droplet of acetic acid, ethylene glycol as well as their 

mixture, including a non-ideal description of the thermodynamic properties [6].  

The aim of this work is to proceed a step further in order to include the 

combustion phenomena. The DropletSMOKE++ code has been extended to include:  

 An operator splitting approach to efficiently manage the combustion chemistry, 

characterized by tens of different species. The same concept is adopted by 

the laminarSMOKE solver [7], already extensively validated;  

 An optically thin model for the description of radiative heat transfer;  

 The possibility for boiling to occur, especially close to the suspending fiber.  
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The final model is then applied to the evaporation, auto-ignition and combustion 

of suspended fuel droplets (acetic acid, ethylene glycol and their mixture), heated by 

an electrical coil placed below the thermocouple. As already described in our 

previous work, the solid phase is modeled as well to describe the preferential heat 

transfer from the fiber to the droplet. DropletSMOKE++ shows a reasonable 

agreement with the experimental data, adopting a kinetic mechanism for the acetic 

acid-ethylene glycol mixture that comprehends tens of species and hundreds of 

reactions. It is obtained via a previous skeletal reduction [8] to reduce the 

computational cost.  

The importance of this work is two-fold: on one side it allows to have a better 

insight on the vaporization and combustion phenomena (e.g. ignition time) occuring 

when a droplet burns in convective conditions. On the other side it paves the way for 

the analysis of more complex fuels, from multicomponent mixtures to the real bio oil 

surrogate. In particular, in this latter case the combustion chemistry is not only limited 

to the gas-phase, but also includes the liquid phase, with the formation of solid 

carbonaceous residues (cenospheres).  

The detailed modeling of these aspects will be the main focus of future works.  
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The Chemical Vapor Infiltration (CVI) is one of the leading manufacturing 

processes for production of Carbon/Carbon (C/C) composites, such as brakes. The 

CVI is a complex process, in which multi-physical and multi-chemical phenomena are 

involved: homogeneous gas phase reactions, heterogeneous surface-deposition 

reactions, molecular diffusion, mixed convection gas flow, radiative heat transfer, etc. 

A wide range of length and temporal scales associated to the transport and chemical 

phenomena occurring along the reactor and inside the porous preforms can be 

observed. In particular, time scales vary from those associated with pyrolytic 

reactions (order of microseconds) to the deposition process time scales (of the order 

of dozens of hours). Other time scales exist between these two disparate scales, 

including the fast and slow chemical reactions rates, and conduction and convection 

time scales. In principle, a complete mathematical model has to account for most of 

these scales [1,2]. However, in practice, this cannot be realized since the span 

between the different scales is too large. Thus, alternative approaches have to be 

accounted for.  

In this work we present a modeling strategy based on the partial decoupling 

between the evolution of gaseous phase in CVI reactors and densification process 

occurring over the porous substrates. The proposed methodology allows to 

overcome the issues mentioned above, without reducing the level of detailed in the 

description of homogeneous and heterogeneous reactions.  

In particular, the following two steps are carried out in series: 1) a steady-state 

CFD simulation of the whole reactor is performed, in which only the gaseous phase is 

modeled, by solving the transport equations of mass, momentum, gaseous species 

and energy. No heterogeneous (i.e. deposition) reactions are accounted for and no 

equations are solved inside the porous preforms; 2) the CFD solution (Step 1) is 

used to provide the proper boundary conditions for modeling the densification 

process in each porous preform. In other words, once the CFD solution is available, 
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the densification is modeled by solving the transport equations of mass, species and 

energy in each preform, accounting both for homogeneous and heterogeneous (i.e. 

deposition) reactions. This 2-step strategy is based on the assumption that the 

gaseous reactions occurring inside the reactor are much faster than the densification 

process, which is usually limited by porous diffusion, even when low temperatures 

are adopted. This means that the homogeneous gaseous phase can be treated as 

quasi-steady with respect to the densification.  

Two different tools were developed to carry out the 2 steps. The CFD step (Step 

1) is carried out with a customized version of laminarSMOKE code [3], a CFD code 

based on the OpenFOAM® framework, specifically conceived for laminar reacting 

flows with detailed kinetic mechanisms. The solver is able to model reactors of 

arbitrarily complex geometry and size, both in steady state and unsteady conditions. 

No limitations on the size and complexity of kinetic mechanisms are present. The 

densification step (Step 2) is carried out with the CVISMOKE++ solver. In its current 

implementation, CVISMOKE++ is able to model the densification in 2D porous 

preforms (planar or axisymmetric geometries), by solving the unsteady transport 

equations of mass, species and energy. Both homogeneous and heterogeneous 

kinetic mechanisms are accounted for, without limitations on their size and 

complexity.  

The proposed algorithm was validated in comparison with experimental data 

available in the literature [4]. The agreement with experimental data is more than 

satisfactory. The model is able to capture, also on a quantitative basis, that bulk 

density slightly decreases from the outside to the inside of the felt, which is an 

indication of the inception of a diffusion limitation. Sensitivity analyses, carried out by 

adding different amounts of hydrogen to the inlet stream, revealed that hydrogen 

addition is helpful in avoiding premature formation of crusts along the external 

surface of preforms.  
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MICREOREACTOR MODELLING FOR ETHOXYLATION REACTIONS 

Martino Di Serio1, Vincenzo Russo1,2, Wiesław Hreczuch3 
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3MEXEO, PL-47-200 Kędzierzyn-Koźle, Poland 

The ethoxylation of fatty alcohol is an important process to produce non-ionic 

surfactants. Ethylene oxide reacts rapidly with long chain alcohols, reaction promoted 

by strong base catalyst, reaching almost full selectivity to the desired products, as 

no-side reactions are favored in the presence of base catalysts. The reaction occurs 

via anionic polymerization, where ethylene oxide molecules are added to a growing 

ether chain, leading to a statistical distribution of the products. The alkoxylation 

reactions are generally performed in semibatch reactors [1], also in series, in which 

the catalyst and the substrate (alkyl phenols, fatty alcohols or acids) are initially 

charged while epoxide (ethylene or propylene oxide) is added during the reaction 

course. This synthesis strategy is due to the high reactivity of alkoxides and also to 

the high heat involved in alkoxylation reaction. The use of semibatch reactors, 

however, have some drawbacks that can be summarized in the following points: (i) 

the reactor volume is relatively high; this aspect could represent a serious problem 

for safety issues due to the high quantity of alkoxide present in the reactor at a 

certain time; (ii) the productivity of the system is quite low for the various steps 

involved in a semibatch process; (iii) the safety of the overall process is not optimal, 

fact due to possible epoxide accumulations that could lead easily to runaways 

reactions. 

A possible solution that could allow overcoming the mentioned drawbacks is the 

adoption of a continuous reactor that can be properly designed for the achievement 

of the desired alkoxylation degree. In the scientific and patent literature both 

traditional tubular reactors and more innovative reactor configurations, like 

microreactors, have been proposed for the alkoxylation reactions. These last are 

particularly suitable for exothermic and multiphase reactions, thanks to the high heat 

and mass transfer exchange. Such reactors were tested in the literature, showing 

good performances in terms of reaction conversion and thermal control, allowing to 

work at relatively high temperatures (240 °C) [2-3]. Even though in the adopted 

experimental conditions it was demonstrated that the flow-pattern is laminar [4], the 
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APPRAISAL AND MODELLING OF INTERNAL MASS TRANSFER 
LIMITATIONS IN LIGHT OLEFINS SYNTHESIS USING 

BIFUNCTIONAL CATALYSTS (OX-ZEO PROCESS) 

Stefan Kocić1, Régis Philippe1, Clémence Nikitine1, Christophe Coudercy2, 
Pavel Afanasiev2, Stephane Loridant2, Pascal Fongarland1,* 

1Catalyse, Polymérisation, Procédés et Matériaux (CP2M), UMR 5128 CNRS – CPE 
Lyon – Université Lyon 1, Villeurbanne, France 

2Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 
Villeurbanne, France 

*E-mail: pascal.fongarland@univ-lyon1.fr 

The key challenge in improving the performance of bifunctional systems is linked 

with the control and adjustment of the distance (or intimacy) between the two 

functions to maximize their cooperation [1]. Traditionally, Weisz-Prater and related 

intimacy criteria are employed [2]. Notwithstanding, those does not seem suitable for 

micro/meso scale intimacy of various functions involved in catalytic processes [1,3]. 

Herein, we focus on the conversion of syngas to light olefins (OX-ZEO process) 

assuming methanol intermediate [4] over bi-functional oxide/zeolite-type catalysts. 

Besides, we aim at describing the effect of spatial organization of functions (Figure 1) 

within reactor bed (macro-scale intimacy), catalyst pellet (micro-scale intimacy) and 

core-shells (meso-scale intimacy) altogether with the impact of internal gradients on 

catalyst activity and product selectivity. Thus, we establish a transient 1D pseudo 

homogeneous plug-flow reactor model and couple DFT-inspired micro-kinetic 

network with a 1D spherical diffusion inside solid catalyst particles. The former is 

extended to account for distinctive reactor (mechanical mixture, double-bed, n-multi-

bed) and catalyst grain configurations (uniform solid pellets and core-shells) 

represented in Figure 1, allowing a thorough analysis of various inter-functions 

intimacy scales. Hence, our approach covers a several intimacy scales discussed in 

the literature providing some new insights into intimacy criteria from the chemical 

engineering perspective. Moreover, in-house experimental data is used for 

microkinetic model fitting, yielding the most important trends regarding products 

selectivity and catalyst activity as well. In conclusion, the approach used herein shed 

some light on the internal diffusion limitations in a bifunctional system and provides 

some new insights into its impact on product selectivity and catalyst activity. 
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TOWARDS THE OPTIMIZATION OF THE INTERNALS DESIGN TO 
BOOST THE HEAT TRANSFER PERFORMANCES OF COMPACT 

FISCHER-TROPSCH REACTORS 

Fratalocchi L., Groppi G., Visconti C.G., Lietti L., Tronconi E.* 

Politecnico di Milano, Dipartimento di Energia, Via La Masa, 34, 20156 Milano, Italy, 
* enrico.tronconi@polimi.it 

In the last decades, several intensified structured reactors based on highly 

conductive inserts were proposed to manage the strong exothermicity of the low 

temperature Fischer-Tropsch synthesis (∆  ≈ −165 kJ/molCO) [1,2].  

In our recent papers [3,4], we showed that heat transfer limitations can be 

overcome by adopting aluminum open-cell foam and periodic open cellular structures 

(POCS) as reactor internals. In this regard, our tests revealed that the packed-POCS 

reactor reached extreme performances (CO Conversion ≈ 80 %) that could not be 

accessed even with the packed-foam reactor technology [4]. The strengths of the 

packed-POCS reactor configuration are the regular geometry of the POCS 

( 	 	 ⁄≈1) that intensifies the internal thermal conductivity, and the improved 

contact of the ordered structure with the reactor wall that governs the wall heat 

transfer coefficient [4].  

In order to gain more insight in the role of the wall/structure contact on the heat 

transfer performances of a packed-POCS reactor, we have tested in the FTS a 

POCS with a 0.5 mm thick outer metallic skin. The POCS was manufactured by 3D 

printing using AlSi7Mg0.6 alloy. The POCS with the skin was printed with the same 

cylindrical shape (O.D = 2.78 cm and L = 4.2 cm) and geometrical properties 

(  = 3 mm and 	= 0.890) of the bare POCS reported in [4]. Two axial through 

holes of 3.2 mm diameter were located at the centerline and at half of the radius of 

the structure for the insertion of the two sliding J-type thermocouples.  

Once the POCS was loaded in the tubular reactor, the system was packed like 

the bare POCS reported in [4] (catalyst ≈ 7.2 g). The performances of the catalyst 

packed into the POCS with the skin were assessed at industrially relevant process 

conditions (180-240 °C, 25 bar, H2/CO = 2 mol/mol, 6410 cm3(STP)/h/gcat). The 

packed-POCS with the skin reached outstanding performances (CO conversion 

≈ 80 %; volumetric heat duty (Q) ≈ 1833 kW/m3) with a remarkable temperature 

control.  
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CATALYTIC WALL PLATE MICROREACTOR STRUCTURALIZED 
FOR REACTANTS’ ADVECTIVE TRANSPORT IMPROVEMENT IN 

DRY REFORMING OF METHANE 

Takashi Fukuda1, Anthony Basuni Hamzah2, Shinichi Ookawara2,3,  
Shiro Yoshikawa2, Hideyuki Matsumoto2 

1Department of Materials and Chemistry,  
National Institute of Advanced Industrial Science and Technology,  

4-2-1 Nigatake, Miyagino-ku, Sendai, Miyagi 983-8551, Japan 
2Department of Chemical Science and Engineering, Tokyo Institute of Technology,  

2-12-1 S1-26, O-okayama, Meguro-ku, Tokyo 152-8552, Japan 
3Department of Energy Resources Engineering, Egypt-Japan University of Science 
and Technology, P.O. Box 179, New Borg El-Arab City, 21934, Alexandria, Egypt 

Dry reforming of methane (DRM, CH4+CO2 ⇄ 2CO +2H2, ∆Hr˚ = 247 kJ/mol) with 

CO2 have taken an attention of its energy saving and the green house reduction 

effect. On the other hand, its large endotherm is leadig to emerging the cold spot, 

which causes to low methane conversion with slowing down of the reaction rate 

and/or the equilibrium carbon deposit (mainly, CH4 ⇄ C+2H2) with the channel 

blockage.  

Micro-reactor technology is one of the suitable approaches to the above problems, 

i.e. the contribution for the process intensification in such a fast gaseous reaction as 

syngas production process. The catalyst coating technique on the reactor wall is a 

good way to prevent the cold spot problem because of the promotion of the thermal 

transport in the catalyst fixed domain and keeping low pressure drop. However, 

currently-available washcoated microreactors face constrained catalyst loading (less 

than ca. 20 % of total volume of the reactor) and high manufacturing cost.  

To address these conventional drawbacks, the authors have tried to developed a 

high-performance, versatile, less coking-prone, and highly-reusable assembly-type 

microreactor for fast gaseous reactions. The main feature of the catalytic wall plate 

microreactor (CWPMR) is that packed bed of powdered catalyst is employed as the 

catalytic layer instead of a catalyst washcoat (Fig. 1). The usage of highly-porous 

packed layer allows increase of catalyst loading to desired capacity and still-

intensified transport properties. CWPMR takes about 10 times better heat-transfer 

performance than a micro-packed bed reactor with ca. φ4 mm-inner diameter. 

Now the authors tackle to intensify the mass transport in the flow channel of the 

original CWPMR. In the case of straight blow-through channel, the contact between 
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Experimental 

Different PTR configurations were tested in a lab scale plant .The SMR tests 

were carried out between 500 °C to 900 °C at 10 bar. During the tests, the methane 

was fed at a rate of 100 mL/min and the steam to carbon ratio (S/C) was maintained 

at 5. The effect of different tube configurations was studied and then these results 

were compared to the results obtained in a conventional fixed bed reactor tested 

under the same conditions. Finally, all the tubes were characterized by Scanning 

Electron Microscope (SEM) and the amount of Pd in each tube was determined by 

ICP-OES. 

Result and discussion 

All the tubes exhibited an increase of 

the hydrogen yield while the reaction 

temperature increased, as it was 

expected. The tubes with the 

palladium seeding in the support have 

revealed a higher H2 yield than the 

same tubes but without the support 

seeding. The -Al2O3-YSZ layers did 

not involve an improvement to the 

activity to the tubes. Besides, this

-Al2O3-YSZ layer was extremely 

fragile and SEM images showed that it husked due to the exposure to high 

temperatures. All tubes showed higher methane conversion as well as higher H2 yield 

than the values achieved in the fixed bed reactor. Moreover, PTR show activity at 

500 and 600 °C while conventional fixed bed reactor did not show any. 
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CONTINUOUS-FLOW REACTOR FOR ONE-STEP PRODUCING 
TETRAMETHYL ORTHOSILICATES FROM SILICA MATERIALS IN 

SUPERCRITICAL METHANOL 

Kozhevnikov I.V.1, Chibiryaev A.M.1,2, Martyanov O.N.1,2 

1Boreskov Institute of Catalysis SB RAS, Acad. Lavrentiev ave. 5, Novosibirsk  
630090, Russia; E-mail: kiv@catalysis.ru 

2Novosibirsk State University, st. Pirogov 2, Novosibirsk 630090, Russia 

Alkyl esters of orthosilicic acid are multi-purpose products for different 

applications, firstly for sol-gel synthesis of pure or silica composite materials – 

sorbents, catalyst supports, aerogels, ceramics, etc. Conventional methods for 

producing tetraalkyl orthosilicates (TAOS) usually compose of some steps including a 

high energy-consuming process. For example, one of the widely used methods is 

three-step synthesis via: 1) a silica reduction by activated carbon at high temperature 

to obtain metallic silicon; 2) eco-dangerous reaction of metallic silicon oxidation by 

molecular chlorine Cl2 to give SiCl4 (with producing highly toxic waste); 3) alcoholysis 

of SiCl4 to give target TAOS together with “highly undesired” HCl. In 1949,  

E.G. Rochow patented a method [1] that is up to now the most popular commercial 

one: metallic silicon is directly oxidized by methanol at high temperature into 

tetramethyl orthosilicate (TMOS). This reaction needs to be catalyzed by metallic 

copper. Another popular process was known since 1992–1993 [2,3]: TMOS is 

obtained by the reaction of silica and dimethyl carbonate (DMC) also at high 

temperature. This direct method requires one more step – production of DMC from 

methanol.  

Earlier, we have reported that TMOS together with its oligomers can be produce 

by one-step method from silica-based materials (Pyrex glass, quartz, silica gel) and 

methanol at 350 °C in a batch reactor: SiO2 + 4MeOH → Si(OMe)4 + 2H2O [4,5]. The 

process is known to be reversible. The accumulation of water formed in the reaction 

negatively affects the process shifting the thermodynamic equilibrium towards the 

starting reagents. A new approach is in the use of desiccant to extract water from the 

reaction mixture during the reaction. For the experimental study, two continuous-flow 

reactors are made containing a flow-through cartridge with a fixed-bed dryer 

(molecular sieves): 1) fixed-bed continuous circulation-flow reactor (A), and 2) 

continuous-flow cascade reactor system (B) (see Figure) [6,7].  
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The use of plug-in dryer cartridge allows producing the reaction mixtures with 

chemical composition close to thermodynamically equilibrium mixtures at 270 °C, 

with maximum product concentrations. So, TMOS content was only 12.8 g/L in a 

mode without desiccant, while 20.2 g/L was in the reaction with desiccant. The 

moisture capacity of the desiccant was evaluated at these conditions. For circulation-

flow reactor (A), kinetic curves of product accumulation were obtain for the reaction 

of some silica materials (quartz sand, perlite, silica gel and vermiculite) of different 

SiO2 content and specific surface area. For industrial production of TMOS, in our 

opinion, the most suitable set-up is a cascade continuous-flow system (B). 

Optimization of the cascade version of the continuous flow set-up will allow achieving 

the highest concentration (highest yield) of the product depending on type of 

desiccant used. 
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INFLUENCE OF CATALYST CHARACTERISTICS ON THE 
FORMATION OF MWCNT - AGGLOMERATES DURING SYNTHESIS 

IN A FLUIDIZED BED REACTOR 

Kuznetsov V.L.1, Moseenkov S.I.1, Zavorin A.V.1, Golubtsov G.V.1, Goidin V.V.1, 
Rabinovich O.S.2, Malinovski A.I.2, Lyah M.Yu.2 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russian Federation 
2A.V. Luikov Heat and Mass Transfer Institute, Minsk, Republic of Belarus 

An important scientific and technological problem is the development of 
continuous high-performance processes that make it possible to obtain multi-walled 
carbon nanotubes (MWCNTs), which, due to their unique properties, are one of the 
key components of rapidly developing nanotechnology. Analysis of various options 
for the design of such a process allows us to identify the most promising fluidized bed 
(FB) technology. Despite some progress in understanding the patterns of individual 
nanotubes catalytic growth and their synthesis in FB under conditions of a significant 
increase in its volume [1,2], a number of problems related to the design of a 
continuous technological process remain unresolved.  

One of the most serious hydrodynamic problems is the creation of a uniform 
fluidization of the nanoparticle powder. The cause of this problem is the strong 
influence of the cohesion of nanotubes and their agglomerates on the hydrodynamics 
of FB. Due to the small size of nanoparticles, they are characterized by very large 
values of the ratio of surface area to volume. This leads to the significant 
predominance of cohesion forces between nanoparticles over the forces of gravity 
and hydrodynamic resistance in the gas flow [3]. The consequence is the formation 
of agglomerates of nanoparticles. The formation and destruction of agglomerates is a 
dynamic process. As the nanotube agglomerates grow, the role of the surface 
interaction of the agglomerates decreases, and their final size and the behavior of the 
FB consisting of them depend on the conditions under which the hydrodynamic 
forces destroying the agglomerates balance the cohesion forces [4]. Under 
unfavorable conditions, a global violation of the homogeneity of FB and formation of 
stagnant zones and jets can occur, leading to the defluidization and loss of main 
technological advantages. 

Here, the relationship between the type and morphology of dispersed powders of 
catalysts for the synthesis of MWCNTs and cohesive properties of primary nanotube 
agglomerates growing on a separate catalyst particle are investigated. Three main 
types of catalysts were studied: 30 % Fe-Co/Al2O3; 40 % Fe-Co/Al2O3 and 40 % Fe-
Co/CaO, which provide MWCNTs with varying average diameters (7, 10, and 20 nm, 
respectively). The morphology of the initial catalysts and the MWCNTs obtained with 
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their use in reactors with fixed and fluidized beds (at T = 660-680 °C, C2H4:Ar = 1:1) 
was investigated by microscopy methods. In addition, bulk density of the powders 
and their specific surface were measured, and the analysis of the particle size 
distribution and fractality was carried out. The fluidity of MWCNT powders was 
evaluated using a drum-type powder rheometer.  

Data were obtained on the fractality of catalysts and MWCNTs produced, and 
their influence on the size distribution of primary and secondary agglomerates of 
MWCNTs formed at different stages of the growth process was analyzed. The study 
of the fluidity of powders by the dynamic method made it possible to establish the 
dependence of the cumulative energy of avalanches on the time between them, as 
well as to measure the fractality of the dynamic and stationary layer of powders. 
These data were used to assess the cohesive properties of catalyst powders and 
MWCNTs. The cohesive properties obtained on various types of catalysts are 
compared with the stability of the FB pilot reactor with internal diameter of 12 cm and 
a capacity of up to 10-12 kg MCNTs per day. The requirements for ensuring this FB-
reactor stable operation are determined. 

The numerical simulation of the hydrodynamic behavior of the MWCNT powder in 
the drum rheometer and directly in a fluidized bed was also performed. The method 
of discrete elements coupled with continuous gas flow simulation, CFD-DEM, was 
used. The established correspondence between the mechanical characteristics of 
model particles and experimental data on the properties of MWCNT agglomerates 
made it possible to close the causal chain "catalyst properties – properties of 
nanotube agglomerates – fluidization regimes of MWCNTs". Together with the 
experimental results, this allows to formulate requirements for catalysts that provide 
conditions for uniform fluidization of MWCNTs. 
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A NOVEL RADIAL-FLOW REACTOR BASED ON CELLULAR 
SUBSTRATES FOR AFTER-TREATMENT APPLICATIONS 

Mauro Bracconi, Matteo Ambrosetti, Matteo Maestri, Gianpiero Groppi  
and Enrico Tronconi 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, Via La Masa 34, Milano, Italy, enrico.tronconi@polimi.it 

The reduction of the vehicular emission limits imposed by legislations requires the 

intensification of the exhaust gas aftertreatment systems (ATS). The abatement 

performances depend on the trade-off between the chemistry, the gas-to-solid 

transport properties and the pressure drops. The state-of-the-art honeycomb 

monolith catalyst substrates suffer from some limitations in the external mass transfer 

regime. In this context, the development of innovative catalyst supports is pivotal to 

improve the ATS performances. Open cell foams and Periodic Ordered Cellular 

Structures (POCS) are characterized by high specific surface areas (>2000 m–1) and 

void fractions (>0.9). Previous work from our group [1,2] revealed that these supports 

guarantee high volumetric gas-solid mass transfer coefficients along with relatively 

low pressure drops. Hence, such structures are potential candidates as enhanced 

catalyst supports for these applications. In this work, we employ Computational Fluid 

Dynamics (CFD) numerical simulations to quantify their performances in realistic ATS 

applications and to compare abatement efficiencies to those of honeycombs.   

The numerical simulations are based on a Volume-Averaging Technique (VAT) 

for porous media implemented in the catalyticFoam framework [3]. Two distinct 

phases, i.e. the gas and the cellular material, characterized by averaged and 

homogeneous properties are employed to describe the system whose tri-dimensional 

and complex geometry is reduced to two pseudo-continuous media. Dedicated 

closure models are employed to account for the inter-phase transport [1,2]. As an 

example of the methodology, a NH3-SCR system has been considered assuming 

simple first order kinetics in NO. A catalyst effectiveness factor based on the Thiele 

modulus is used to account for internal transport limitations. 

Initially, the performances of open-cell foams and honeycomb monoliths have 

been compared in a conventional ATS device (diameter 19.05 cm - length 30.5 cm). 

A 400/5 honeycomb monolith loaded with 140 g/L of Cu-zeolite catalyst is assumed 

as reference. An open-cell foam with 40 pore per inch (ppi) and 0.9 bare porosity has 

been selected such that, after that the catalyst load was consider, shows similar 

surface area of the monolith. Figure 1a compares pressure drop and NO conversion 

in the two systems. The conversions in kinetic and internal mass transfer limited 

regimes are almost superimposed. In contrast, the open-cell foam significantly 

outperforms the honeycomb monolith in external mass transfer conditions (km,foam ≈ 
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10 km,HC). However, foams are characterized by one order of magnitude higher 

pressure drops, hindering their application to ATS.  

Figure 1. Conversion and pressure drop for honeycomb (continuous line) and open-cell foams 
(dashed line) in conventional (axial) (a) and innovative (radial) configuration (b) at a gas-hourly-space 

velocity (GHSV) of 87000 h–1 

To overcome such a limitation, we propose a different geometry of the device. A 

radial flow configuration, widely adopted in conventional chemical process 

applications when pressure drops are key, is considered. It is evident that such a 

solution is possible only with open-cell foams and POCS, since their geometry is 

isotropic and permeable to the fluid in all the spatial directions. The inset in Figure 1b 

shows an alternative configuration which consists of an internal inlet channel 

surrounded by an annulus of foam and by an external exit channel. To accommodate 

the same amount of catalyst, the device diameter is kept constant while the length is 

increased (+20 %) to compensate for the void volume of the inlet and outlet 

channels. An open-cell foams with 60 ppi is considered in this case. Despite the 

radial flow configuration reduces the volumetric mass transfer coefficients, still an 

advantage of a factor 7 respect to the honeycomb is present. The NO conversions 

are similar for both the supports in the entire regime considered, as shown in Figure 

1b. Besides, radial flow is able to drastically reduce the pressure drop which is even 

lower than in the conventional honeycomb. Advantages are also expected thanks to 

faster heat-up of the device. Further optimization of both the structures and the 

geometry is expected to provide additional improvements of the performances, 

paving the way towards the intensification of aftertreatment systems. 

References 

[1] Bracconi M., et al., Chemical Engineering Journal 352, 558 (2018). 

[2] Bracconi M., et al., Chemical Engineering Journal 277, 558 (2019). 

[3] M. Maestri and A. Cuoci, Chemical Engineering Science, 96 106 (2013). 

Acknowledgements 

The authors acknowledge the European Research Council for Grant 694910 (INTENT) and MIUR, 
FARE RICERCA IN ITALIA, project BEATRICS Grant R16R7NLWPW. 

0 200 400 600
0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
re

ss
u

re
 d

ro
p

 [b
ar

]

Temperature [°C]

0.00

0.25

0.50

0.75

1.00

N
O

 c
on

ve
rs

io
n 

[-
]

(a)

200 400 600
0.00

0.05

0.10

0.15

P
re

ss
u

re
 d

ro
p

 [b
ar

]

Temperature [°C]

0.00

0.25

0.50

0.75

1.00

N
O

 c
on

ve
rs

io
n 

[-
]

(b)



OP-II-15 

148 

FLAT CATALYST AS A HEATING ELEMENT OF A REACTOR 

Shtyka O.1,2, Blaszczyk N.1, Ciesielski R.1,2, Kedziora A.1,2, Maniecki T.1,2 

1Institute of General and Ecological Chemistry, Lodz University of Technology, 
Zeromskiego 116, 90-924 Lodz, Poland, e-mail: chemshtyka@gmail.com 

2National Research University of Electronic Technology, Institute of Advanced 
Materials and Technologies, Shokin Square 1, 124498, Zelenograd, Moscow, Russia 

The research work deals with developing a prototype of reactor in which a 

catalyst serves also as a heating element of the reactor. This reactor comprises 

mainly of two disc-like plates, the flat catalyst inserted between them, and wide  

O-ring seals made of electroinsulating material and placed on the inner edges of the 

disc-like plates. The heating of the internal space of the reactor is accomplished by 

clamping the catalyst’s opposite ends with copper connectors which are connected to 

an external power source. When the electrical current flows through the catalytic it 

encounters resistance, resulting in heating of the catalyst and the reaction gas 

mixture flowing through it (i.e. Joule heating). The use of O-ring seals with non-

conductive properties ensures the isolation of catalyst, therefore no current flows 

through the disc-like plates. The heating element of the reactor is based on stainless 

steel wire mesh with deposited metal nanoparticles (such as Cu, Ni). The advantages 

of such reaction design are: simplicity of the construction and ease of replacement of 

catalyst; and energy efficiency as only one element of the reactor is heated.  

The reactor was used to evaluate the influence of the passage of electric current 

through the catalyst on the course of catalytic processes in the presence or absence 

of externally applied electromagnetic field. This field was generated by application of 

an insulated porous electrode in close proximity to a catalyst’s surface. The effect of 

electromagnetic effect was investigated in the model reaction of gas-phase oxidation 

of volatile organic compounds. The copper and nickel catalysts were prepared by 

electrochemical deposition from corresponding nitrate salts. The analysis of the 

reaction products was carried out by using two on-line gas chromatographs equipped 

with a FID and TCD.  
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UNVEILING THE ROLE OF SURFACE BARRIERS  
IN THE CATALYST DEACTIVATION BY COKING BY USE OF A 

REACTION-DIFFUSION MODEL 
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Intracrystalline diffusion of guest molecules in nanoporous materials has been 

long time recognized as the dominance of mass transport. With the advent of 

microimaging, surface barriers of guest molecules has been shown to be an 

appealing challenge in applying nanoporous materials in catalysis and separation1,2. 

Deciphering the role of surface barriers in catalysis is often nontrivial owning to the 

intertwinement of mass transport and complex reactions observed from overall 

measurements. 

In this work, we aimed at developing a reaction-diffusion model to account for the 

surface barriers inside porous materials. The propylene oligomerization, which 

composes of step of methanol-to-olefins reaction, was considered as model reaction. 

The explicit function of surface barriers on coke deactivation was unveiled. 

To emphasize the effect of surface barriers on reaction, the boundary conditions 

(i.e. Neumann boundary condition) was considered for a 3D reaction-diffusion model3 

d /d  

where D is the intracrystalline diffusivity (m2/s), α the surface permeability (m/s), q the 

loading of component i (mol/m3), f the adsorption constant, C the concentration in gas 

phase (mol/m3) and l the half of material length (m). In Figure 1a, the 3D reaction-

diffusion model was developed for cubic porous materials. 

By use of post-synthetic method1, the external surfaces of SAPO-34 zeolites 

were modified to finely alter the surface permeability of guest molecules. The uptake 

measurements of propylene were performed on these two samples to obtain 

transport coefficients. In Figure 1b, compared with the results of SAPO-34-surf 

sample, the  of propylene in modified SAPO-34 zeolites (SAPO-34-int) is 

significantly improved while the intracrystalline diffusivity D remains almost constant. 

Reaction-diffusion simulations indicate that the retention of propylene at the external 

surface imposed by surface barriers results in the decreased conversion of propylene 

and acceleration of catalyst deactivation as shown in Figure 1d. These results are 
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MODELLING AND SIMULATION OF NON-ISOTHERMAL  
CATALYST PELLETS FOR UNSTEADY-STATE METHANATION  

OF CO/CO2 MIXTURES 

Jannik Schumacher, Dominik Meyer, Jens Friedland, Robert Güttel 

Institute of Chemical Engineering, Ulm University, Ulm, Germany, 
jannik.schumacher@uni-ulm.de 

The methanation process is a promising part of a sustainable energy supply and 

infrastructure via the power-to-gas (PtG) process. However, since the availability of 

renewable energy and carbon sources is fluctuating, the methanation has to be 

operated under unsteady-state conditions as well, depending on the upstream 

storage capacities [1]. One of the main challenges arising from this situation is the 

dynamic behavior of the porous catalyst pellets used for methanation, where heat 

and mass transfer as well as the chemical reaction occur simultaneously. Thus, 

dynamically changing spatial profiles of temperature and concentrations develop, 

which are coupled non-linearly. Among methanation of pure CO2 and CO, a mixture 

of both carbon oxides is of interest, especially when considering process gases as a 

carbon source, for example blast furnace gas. However, when switching from CO2 to 

CO-methanation or between various mixtures of both, the dynamic profiles change in 

an unpredictable way. Thus, the present contribution analyses the dynamic behavior 

at particle scale based on modelling and simulation. 

The model equations for heat and mass balance arising from the unsteady-state 

reaction-diffusion problem are implemented in Aspen Custom Modeler for simulation. 

The binary friction diffusion models are used in accordance to Kerkhof [2], while the 

reaction kinetics are taken from Klose [3] and Koschany [4]. For simulation typical 

methanation conditions are chosen with respect to temperature, pressure and 

reactant composition. Since the external heat transfer resistance is expected to 

predominate the internal, the external resistances are calculated as well. Based on 

the dynamic profiles developing upon switching between CO2- and CO-rich periods 

the core temperature and the surface methane flux are used as indicators for the 

pellet performance. These indicators are used to study the influence of structural 

parameters, such as diffusion length or pore size, on the dynamic behavior.  

Figure 1 exemplarily shows the simulated spatial profiles of the involved 

components under isothermal conditions and negligible external mass transfer 
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resistances for the methanation of a 

mixture of CO and CO2. It becomes 

obvious that CO2 diffuses deeper into 

the particle, since it is less reactive than 

CO. The inflection point in the CO2 

profile also indicates that it is converted 

to CH4 once CO is already converted to 

a high extent. Although H2 is provided at 

the surface below the stoichiometrically 

required fraction, it is not consumed 

completely along the radial direction 

because of its high diffusion coefficient. 

The profile of the N2 molar fraction 

represents the effect of volume 

contraction during reaction, which induces viscous flow in addition to a pure diffusive 

transport mechanism. 

The dynamic behavior is studied for the isothermal and non-isothermal case and 

aperiodic and periodic step changes of the gas composition are simulated. The mass 

flux across the external catalyst was evaluated for different Knudsen numbers. The 

isothermal results show the impact of different characteristic times for diffusion and 

reaction for the species considered in the simulation. These exemplarily leads to a 

non-monotonic mass flux for H2 upon switching from CO to CO2 rich feed gas. Those 

findings are also reported experimentally for methane. The simulation results for the 

non-isothermal case will be reported in the contribution, with emphasis on deducing 

the effect of the non-linear coupling between heat and mass balance on the obtained 

fluxes for the reactive species.  
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A WIDE-RANGE EXPERIMENTAL AND MODELING STUDY  
OF H2S PYROLYSIS AND OXIDATION IN JET-STIRRED  

AND FLOW REACTORS 

Alessandro Stagni1, Suphaporn Arunthanayothin2, Olivier Herbinet2,  
Frédérique Battin-Leclerc2, Tiziano Faravelli1 

1Department of Chemistry, Materials, and Chemical Engineering “G. Natta”,  
Politecnico di Milano, Milano 20133, Italy. E-mail: alessandro.stagni@polimi.it 
2Laboratoire Réactions et Génie des Procédés, CNRS-Université de Lorraine,  

1 rue Grandville, 54000 Nancy, France 

In recent times, the increasing interest in bio-gas and bio-oil as possible 

replacement of fossil energy sources has opened further environmental issues, due to 

the presence of contaminant species, often harmful for the human health [1]. Among 

them, the presence of hydrogen sulfide (H2S) is particularly critical: although being 

present in traces (< 104 ppm [2]) it might be letal for human health even in such 

amounts. Moreover, from a chemical point of view, both experiments and kinetic 

modeling [3] showed that small amounts of H2S can modify hydrocarbon reactivity, 

promoting an early oxidation. As a result, obtaining a comprehensive characterization of 

the underlying chemistry behind H2S and its mutual interactions with other species has 

become of major importance for a gradual energy transition to renewable resources.  

As a first step, this work aims at characterizing the pyrolysis and oxidation of H2S in 

a wide range of operating conditions. To address this, new experimental measurements 

were obtained at CNRS Nancy in a Jet-Stirred and Flow-Reactor configurations, in such 

a way to cover low-, intermediate- and high-temperature operating conditions, with high 

dilution levels and H2S as fuel in trace amounts.   

Table 1 summarizes the investigated experimental conditions, for both pyrolysis and 

oxidation cases.  
Table 1. Experimental compositions investigated in this work 

Type P T     

JSR 1.07 bar 600-1200 K 2 s 500 ppm balance - 

JSR 1.07 bar 400-1200 K 2 s 500 ppm balance 0.003-0.0204 

0.0408-0.0816 

FR 1.20 bar 1000-2000 K 0.25 s 500 ppm balance - 

FR 1.27 bar 600-1300 K 0.25 s 500 ppm balance 0.0075 

At the same time, a detailed kinetic model for the pyrolysis and the oxidation of H2S 

was developed by leveraging the most updated experimental and theoretical 
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estimations of the rate constants available in literature. Specifically, the works by Zhou 

et al. [4] and Glarborg et al. [5] were used as reference points.  

Figure 1 shows the pyrolysis results and related predictions, as obtained in Jet-

Stirred and Flow Reactors. It can be observed that the kinetic model underestimates 

JSR reactivity at lower temperatures, while a reasonable agreement is obtained in FR 

conditions. 

Figure 1. H2S pyrolysis in a) Jet-Stirred Reactor and b) flow reactor, respectively. Experiments vs kinetic 
modeling 

Further study will involve the extension of the kinetic mechanism in oxidation 

conditions, and validation against the experimental results obtained in parallel during 

the experimental campaign. 
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PRODUCTION OF ELEMENTAL SULFUR AND HYDROGEN FROM 
HYDROGEN SULFIDE IN THE CYCLIC CHEMISORPTION-

CATALYTIC REGIME 

Andrey Zagoruiko, Pavel Mikenin, Sergey Lopatin 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia,  
zagor@catalysis.ru 

Active development of hydroprocessing technologies and hydrogen energy 

require the development of new efficient ways for production of hydrogen, 

prefereably from non-hydrocarbon feedstocks.  

Hydrogen sulfide is the very attractive feedstock for this purpose. First, it is the 

conventional waste from oil and natural gas processing facilities. Second, the 

bonding energy of hydrogen in H2S is the lowest among all hydrogen-containing 

compounds met in nature. 

Unfortunately, the reaction of hydrogen sulfide decomposition 

 H2S  1/n Sn + Н2  (1) 

is characterized with severe equilibrium limitations. The complete H2S decomposition 

requires the extra-high temperatures (above 1500 °C), leading to high energy 

consumption, necessity to apply expensive thermostable materials and risk of 

backward element recombination at cooling stage. In (very typical) case, when the 

carbonaceous compounds (CO2, hydrocarbons) are present in the gas feedstock, 

such temperatures may also cause side reactions with formation of undesired 

products (coke, CO, COS and CS2). Due to these reasons, still there is no feasible 

technology for H2S decomposition in wide practical application. 

The new process approach Ошибка! Источник ссылки не найден. is based 

on the chemisorption enhancement of the decomposition reaction (1). The process, 

involving metal sulfide chemisorbent-catalyst, includes cyclic alteration of two 

reaction stages technologically separated in time and space: 

 H2S + MeSn  H2 + MeSn+1  (2) 

 MeSn+1  MeSn + 1/n Sn  (3) 

As shown by thermodynamic calculations [1], the reaction (2) is exothermic and 

the corresponding equilibrium conversion of H2S may reach 100 % at ambient 

temperature. The regeneration reaction (2) require higher temperatures, but the 

backward formation of H2S is completely excluded by hydrogen absence in the 

reaction media during the regeneration stage.  
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The earlier work [2]stated the possibility of hydrogen sulfide decomposition at 

ambient temperatures, but it contained no quantitative data on hydrogen yield. The 

aim of the current study was experimental check of this possibility. 

The performed experiments showed that under cyclic alteration of chemisorption 

and regeneration stages, the formation of hydrogen at ambient temperatures is 

negligible at all tested sulfides, most probably, due to kinetic limitations. The 

conversion of H2S with emission of hydrogen at the chemisorption stage becomes 

visible starting from 200 °C and it rises with temperature increase reaching maximum 

at 350 °C (see Fig. 1), this rise caused by kinetic factors. With further temperature 

rise the influence of backward reaction of H2S formation becomes significant and the 

observed conversion decreases. At the same time, it is seen that H2S conversion in 

all presented temperature range significantly exceeds the equilibrium value, this is 

caused by the chemisorption enhancement of the H2S decomposition reaction.  

Fig. 1. Conversion of H2S at the chemisorption stage under the chemisorption-regeneration cycling. 
Points – experimental data, dashed line equilibrium for reaction (1).  

Chemisorbent – FeS, reaction media – 5% H2S in nitrogen 

High-temperature (600 °C) regeneration completely restores the chemisorbent 

properties, showing no degradation of this material during 20 cycles. 

Though the received results appeared to be less optimistic than it was expected 

in respect to reaction temperatures, the propose process approach is still feasible for 

practical application in hydrogen manufacturing purposes. The presentation 

discusses the possible process flow sheets. 
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SORPTION ENHANCED DIMETHYL ETHER SYNTHESIS: 
MAXIMISING CARBON EFFICIENCY 

Jasper van Kampen1,2, Francesco Sebastiani1, Jurriaan Boon1,2,  
Jaap Vente1, Martin van Sint Annaland2 

1Sustainable Process Technology, TNO, Petten, The Netherlands;  
2Chemical Process Intensification, TU/e, Eindhoven, The Netherlands  

*Corresponding author: jasper.vankampen@tno.nl 

Introduction 

Utilisation of CO2 is expected to play a crucial role to enable sustainable industrial 
production of carbon-based products, the large-scale storage and transport of 
renewable energy, and the production of renewable fuels [1]. Conversion of CO2 with 
H2 produces H2O as by-product, and the reactions are generally equilibrium limited. 
By the principle of Le Chatelier, the in situ removal of H2O from the reaction mixture 
results in a shift of the equilibrium to the product side and enhance the conversion 
[2]. Very high carbon efficiencies, an important criterion for the value chain for 
converting the available CO2, have been demonstrated for the conversion of 
synthesis gas and CO2 to DME (fuel and platform chemical) by sorption enhanced 
DME synthesis (SEDMES) [3,4], in which water is removed in situ by the use of a 
solid adsorbent. Experimental proof-of-principle has shown increased DME yield, 
improved selectivity towards DME over methanol, and reduced CO2 content in the 
product [3,5]. This contribution will present a combined approach of experimental 
scale-up and model development, which has been proven successful in the 
development and scale-up of the SEDMES process [2,6]. 

Methods 
Both a 1D dynamic cycle model (Matlab) was developed, verified and validated, 

and transient experiments in a packed-bed reactor were performed for various 
stoichiometric feed compositions and inert N2, Ar. Various copper/zinc oxide/alumina 
catalysts and commercial zeolite LTA steam adsorbent (mixed in different ratios) 
were used experimentally. Adsorption was conducted at 250-300 °C, 25-40 bar(a) 
and with different feed gas compositions. Regeneration was done by switching to dry 
gas, depressurisation and eventual heating to 400 °C. Transient analysis was done 
by a combination of mass spectrometry and micro GC.  

Results and discussion 

A representative breakthrough experiment of sorption enhanced DME synthesis 
is shown in Figure 1. Prior to steam breakthrough, DME and unconverted CO are the 
primary products. After steam breakthrough (inset Figure 1) the concentration of 
DME drops, accompanied with the breakthrough of CO2 and methanol indicating 
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SORPTION ENHANCED DIMETHYL ETHER SYNTHESIS:  
REACTOR MODELLING AND DESIGN 

Simone Guffanti1, J. van Kampen2, C.G. Visconti1, J. Boon2, G. Groppi1* 

1LCCP - Dipartimento di Energia, Politecnico di Milano, Milan, Italy, 
gianpiero.groppi@polimi.it 

2Sustainable Process Technology, TNO, Petten, The Netherlands 

Introduction 

Dimethyl ether (DME), a promising alternative fuel [1], can be synthetized from 

syngas via a one-step process (direct synthesis) based on a single reactor loaded 

with both methanol synthesis and dehydration catalysts. Two of the main issues of 

the direct DME synthesis are the thermodynamic equilibrium limitations and the 

thermal management of the reactor [2]. The thermodynamic limitations are more 

stringent when CO2-rich feed is used (e.g. syngas obtained from biomass 

gasification) due to the larger production of water associated to the DME synthesis 

from CO2. Sorption Enhanced DiMethyl Ether Synthesis (SEDMES) process with  

in-situ water removal is a potential solution to overcome such limitation allowing for 

once through process configurations [3].  

Methods 

A 2D+1D dynamic model of a single tube of an externally cooled multitubular 

fixed bed SEDMES reactor has been developed and implemented in gPROMS for 

the numerical solution. The model includes 2D mass, enthalpy and momentum 

balances for the gas phase and 1D mass balances for the catalysts and adsorbent 

solid phases, for an accurate description of thermal effects and internal diffusion 

limitations. Transport coefficients and H2O adsorption isotherm correlations are taken 

from the literature. The kinetics is based on a literature model [4,5] refitted on the 

basis of experimental data.  

Results and Discussion 

The model has been successfully used to reproduce the dynamic behavior of a 

bench scale SEDMES tubular reactor operated in the TNO test facilities in Petten. 

The calculated outlet molar concentrations and centerline gas temperature have 

been used for the validation. In Figure 1 model predictions are compared with 

experimental data obtained at 25 bar, 523 K of inlet and wall temperature, space 

velocity of 100 h–1, syngas feed composition with CO/CO2 ratio 2 and  
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MATHEMATICAL MODELING OF VOLATILE ORGANIC 
COMPOUNDS OXIDATION PROCESS IN REVERSE-FLOW 

REACTOR WITH SIDE GAS INLET 

Sergey Zazhigalov1,2, Andrey Zagoruiko1,2 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia  
2Institute of Solid State Chemistry and Mechanochemistry, Novosibirsk, Russia  

zagor@catalysis.ru  

In the environmental protection field an important direction is the purification of 

waste gases from volatile organic compounds (VOCs) impurities. Currently, for low-

concentrated emissions processing, the catalytic reverse-flow processes [1, 2] 

possess the best economic and environmental indicators and are capable to treat 

gases with VOC content higher than 1 g/m3 in autothermal regime (not requiring 

additional energy supply).  

The reverse-flow reactor considered in the present study has non-standard 

inlet/outlet arrangement as gas enters and leaves the bed not in axially-oriented 

direction, but from the cylindrical apparatus side. The process was examined by 

means of mathematical modeling in 3D geometry (COMSOL Multiphysics) for toluene 

oxidation reaction [3]: 

C7H8 + 9O2  7CO2 + 4H2O    (1) 

The catalyst bed was considered as porous medium and model took into account 

gas velocity and pressure (Brinkman equations), mixture compounds and medium 

temperature distributions. The calculations were carried out until the stabilization of 

forward-reverse cycles was reached.  

 
Fig. 1. Temperature distribution at the end of forward and reverse cycles (°C) 
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Fig. 1 shows the temperature distribution at the end of forward (left) and reverse 

(right) cycles in the central reactor plane. The model showed that heat wave, that 

formed in the reactor provides strongly nonuniform temperature distribution near the 

apparatus walls. 

During the model calculations the geometric and inlet gas parameters were 

varied to explore the process behavior in different conditions. It was discovered that 

process passes in asymmetric nonstationary modes that do not possess such a good 

stability as symmetric ones. Thus, the management and arrangement of the flow 

inlet/outlet significantly affects on the reverse-flow process stability and efficiency. 
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ROOM-TEMPERATURE TOLUENE DECOMPOSITION BY 
CATALYTIC NON-THERMAL PLASMA REACTOR  

KVSS Bhargavi, Debjyoti Ray, Ch. Subrahmanyam* 

Department of Chemistry, Indian Institute of Technology Hyderabad,  
Kandi 502285, Telangana, India, *E-mail: csubbu@iith.ac.in 

 
The present work deals with the decomposition of low concentrations of a volatile 

organic compound, toluene, in a packed-bed dielectric barrier discharge (DBD) 

plasma reactor. 2.5 % MOx/-Al2O3 (M = Mn, Co) catalysts prepared by wet 

impregnation method and characterised by PXRD, BET, TPR, TPD (CO2 and NH3), 

TEM, and XPS to understand the metal-support interaction. Toluene vapour blended 

with atmospheric air (@ 100 lph) is fed into the reactor. The influence of varying input 

toluene concentration between 50 and 200 ppm on the conversion is studied for 

different packing conditions. The effect of surface modifications of -Al2O3 with 

transition metal oxides is found to have a significant impact on product selectivity and 

ozone formation. The plasma reactor that employed surface-modified -Al2O3 with 

transition metal oxides indicated improvement in CO2 selectivity besides suppressing 

the formation of ozone, compared to -Al2O3 and DVD reactor plasma reactor. 

Co3O4/-Al2O3 effectively decomposed toluene (95 % at 3.3 W) at lower 

concentrations with about 70 % CO2 selectivity. MnO2/-Al2O3 and Co3O4/-Al2O3 

displayed the same conversion effect at higher toluene input. Almost 98% of the 

carbon balance was obtained while using MnO2/-Al2O3 and Co3O4/-Al2O3, which 

signifies the necessity of integration of metal oxide to get the effective conversion as 

well as maximum selectivity towards the desired products. The mean electron 

energies and energy electron distribution function were also calculated using 

BOLSIG+ software. The high-performance packed-bed DBD with 2.5 % MOx/-Al2O3 

packing offers a promising approach for removing dilute VOCs. To optimise the 

reaction conditions and to obtain 100 % conversion, the input power and airflow rate 

were varied.  
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HEAT TRANSFER IN BUBBLING FLUIDISED BED REACTORS  
WITH IMMERSED VERTICAL HEAT EXCHANGERS 

Philipp Riechmann, Tilman J. Schildhauer 

Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), 
 Villigen, Switzerland, tilman.schildhauer@psi.ch 

Conversion of chemical energy carriers often involves strongly exo- or 

endothermic chemical reactions such as methanation, Fischer Tropsch, gasification, 

hydrogenation/ dehydrogenation of liquid organic hydrogen carriers (LOHC). The 

challenge for these reactors is to ensure high conversion while not compromising the 

selectivity or, in many cases, the catalyst stability. Although technical solutions exist 

for large scale processes running continuously such as in the oil/gas industry, these 

cannot be directly transferred to an energy system that needs to integrate a large 

share of volatile renewable energy resources. Here, compact and flexible reactors at 

smaller scale are necessary. Bubbling fluidised bed reactors allow for fast start-up 

and load changes; they offer very high heat transfer rates to the immersed heat 

exchanger tubes even in part load, and have proven to be a robust and flexible 

technology for several investigated methanation processes.  

For safe scale-up and reactor optimization, correct prediction of the reactor 

performance is necessary not only with respect to reaction kinetics and mass 

transfer, but also to the energy balance. The latter is dominated by the heat transfer 

to the immersed heat exchanger tubes, which in turn is influenced by rising bubbles 

that cause intense mixing of the solids. 

A pilot scale pressurized set-up (inner diameter 22 cm, up to 2 m bed height, 36 

heat exchanger tubes, up to 10 barg operation) was built and is used for measuring 

bubble sizes, their rise velocities [1] and overall heat transfer for Geldart A and B 

material and several linear velocities. The main reactor has horizontal ports for 

devices that allow radial movement of the optical sensors under pressure and 

temperature. From top, an axially movable sampling tube is introduced to measure. 

To better understand the impact of rising bubbles on the heat transfer, a heat flux 

sensor (HFX) is used in the Perspex flow model, see Figure 1. One of the mock-ups 

of the heat exchanger tubes is heated with hot water, while a flat sensor on its 

surface  
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Subsequently, controlling the reaction-diffusion area and concentration gradient 

of the reagents, and hence, the kinetics of the reaction, we performed the controlled 

synthesis of a spin crossover (SCO) material, i.e. a material capable of exhibiting 

bistability. Obtained SCO materials possess suitable chemical and physical 

properties that bring promises for their use in different applications, notably as 

sensors or molecular switches [3]. Moreover, preparation of a SCO in a microreactor 

(such as Fig. 1) under controlled synthetic conditions revealed the interesting 

unprecedented growing pathways, which cannot be explored using conventional 

methods. 

Furthermore, crystalline materials are typically insoluble and unprocessable 

crystalline powders, which poses issues in their handling and application. To 

overcome this drawback, we demonstrated the ability of this microfluidic-based 

method (Figure 1) to produce processable fibers of crystalline materials. Surprisingly, 

this microfluidic approach also allowed the controlled deposition and conformal 

printing of the produced fibers of crystalline materials on various surfaces, enabling 

the application of these materials in advanced patterning technologies [4-5]. 

In summary, microreactors provided by microfluidic approaches give rise to useful 

and promising platforms for controlled synthesis, in-depth study, and enhanced 

processing of materials, particularly crystalline materials. These features are not 

attainable through conventional methods currently used for synthesis of these 

materials. 
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PARAMETRIC SENSITIVITY AND DESIGN OF REACTORS FOR 
CHEMICAL PROCESSES IN WATER FLUIDS 

Mikhail Sinev1, Yury Gordienko1, Ekaterina Lagunova1, Zukhra Fattakhova1, 
Dmitry Shashkin2, Yury Ivakin2 

1N.N. Semenov Federal Research Center "Chemical Physics", R.A.S.,  
Moscow, Russian Federation, E-mail: mysinev@yandex.ru 

2M.V. Lomonosov Moscow State University, Chemical Department,  
Moscow, Russian Federation 

Water fluids at temperatures approaching the critical point (647 K) and above are 

used as an environmentally benign ("green") media and reactants for various 

chemical processes, including syntheses of organic compounds and inorganic 

materials, processing of natural raw materials, waste treatment, etc. [1]. In some of 

the most important chemical and physical properties, including reactivity and 

dissolution ability, degree of dissociation and dielectric properties, they differ 

significantly from liquid water and water vapor at relatively low temperatures and 

pressures. It is these differences that often determine the technological advantages 

of water fluids in the considered temperature range. However, in this case, the 

properties of water can vary sharply and non-monotonously with changing state 

parameters. This determines the high parametric sensitivity of chemical processes 

and makes special demands on the equipment used for their implementation. 

In this work, we studied the structuring and crystallization of amorphous silicon 

oxide (high-purity amorphous silica and Sigma-Aldrich silica gel Davisil grade 646) in 

batch reactors of various designs. The influence of state parameters on the formation 

of materials of a target structure and morphology, as well as on side processes 

caused by uncontrolled phase transitions and mass transfer in the reactor, is 

considered. 

It is shown that during the processing of amorphous silica in a water fluid medium 

at 600-700 K, a sharp decrease in the value of its specific surface area occurs over 

time; in the presence of alkali metal ions (Na+) in a concentration above 10–2 %, 

crystalline phases are formed, the amount and ratio of which are governed by 

temperature, fluid density and processing time. Figure 1 shows the dependence of 

the specific surface area and the intensity of the main reflexes in the diffraction 

patterns of silica gel on the fluid density (). It is worth noting that even at  as low as 

10–3 g cm–3 (that is created in the closed autoclave by water adsorbed in the material) 



OP-II-27 

173 

a significant structuring ("cold sintering") of the material occurs, whereas after a 

similar treatment in a crucible in the open air no changes were noticed. 

 

Fig. 1. Effect of fluid density on specific surface area (1) and intensity of main reflexes of cristobalite 
(2) and keatite (3) phases; silica gel treated at 653 K for 3 h 

In addition to the duration of the treatment, temperature and pressure (or fluid 

density), the physical state of water (liquid vs. vapor) below the critical point 

significantly affects the intensity of the process and the phase composition of the 

resulting material. One of the reasons for the uncontrolled appearance of liquid water 

in the reaction space and its side effect on the target process is the presence of 

relatively cold zones in the reactor where condensation can occur. 

Several solutions for the design of reactors of various sizes have been 

considered, which make it possible to achieve a constant temperature in the reaction 

zone and to avoid the influence of liquid water on the morphology and phase 

composition of silica during its processing in water fluids. In particular, for 

experimental small-volume autoclaves with individual heating, it is optimal to use an 

additional inner cell of heat-conducting material with a loose fitting lid. 
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THE RELATIONSHIP BETWEEN THE MODES OF THE CONTACTOR 
AND THE EXTRACTOR IN THE REACTOR WITH A MEMBRANE 

CATALYST 

Skudin V.V., Gavrilova N.N., Sapunov V.N. 

D. Mendeleev University of Chemical Technology of Russia,  
Miusskaya sq.9, 125047, Moscow, Russia, skudin@muctr.ru 

The main reactor modes with a membrane catalyst (contactor, distributor and 

extractor) differ from each other in the way the reactants are fed into the reactor and 

the reaction products are removed from it. In the extractor mode, the reagents are 

fed into the reactor as a mixture of the appropriate composition, and the products are 

separated into two streams (permeate (P) and retentate (R)) with different chemical 

compositions on both sides of the membrane catalyst. 

 

Fig. 1. Conversion CH4 in DRM on Mo2C membrane 
and tradition (powder) catalysts from contact time at 

850 C, CH4:CO2 = 1 

Fig. 2. Conversion CH4 in DRM at extractor 
mode on Mo2C membrane catalysts from 

ratio P/[P+R] at 850 °C, CH4:CO2 = 1, 
contact time – 0,007 s 

The technological boundaries of the extractor’s mode are two that with forced 

(pressure-drive) and diffusion (concentration-drive) transport of contactor. At the 

forced transport contactor mode reagent mixture passes through the pore structure of 

the membrane catalyst due to pressure difference. In the of diffusion transport mode, 

the entire mixture of reagents enters and exits from shell-side of reactor and 

penetrates into the membrane catalyst as a result of concentration difference. 

Figure 1 shows the change in the degree of conversion of methane in DRM as 

function of the contact time for powdered Mo2C (traditional catalyst) and for 

molybdenum carbide deposited on the corundum microfiltration membrane 
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(membrane catalyst). Already at contact time a value of 0.045 g·s/cm3, the methane 

conversion on the membrane catalyst reaches 80 %. On a traditional catalyst such a 

conversion value was not achieved at all under conditions of our experiment. This 

can undoubtedly be considered as a demonstration of the catalytic process 

intensification on membrane molybdenum-carbide catalyst for forced and diffusion 

mode of contactor. 

Figure 2 shows the change in conversion of methane in the extractor mode in the 

reactor with a membrane catalyst. At P/[P+R] = 0, the entire CH4:CO2 mixture passes 

only through the shell side of the reactor (diffusion mode). At P/[P+R] = 1, the entire 

reagents mixture passes through the pores of the membrane catalyst and removed 

out from tube side (forced mode). It turns out that results of these modes DRM are 

almost the same - 36.3 % and 35.8 %, respectively. Moreover, the forced transport of 

the reagents into the pores of the membrane catalyst (penetrated flow) reduces the 

conversion of methane. 

Both results presented in the graphs cannot be explained from the standpoint of 

classical catalysis and mass transfer in a continuous viscous medium. To understand 

the essence of the presented results, one should use the hypothesis that was 

proposed to explain the intensification of DRM on a tungsten-carbide membrane 

catalyst [1]. 

The essence of the proposed hypothesis is analogy with the phenomena 

observed in the Knudsen compressor. When a temperature gradient is applied in the 

channels of a porous material, the dimensions of which are less than 1 m, two 

oppositely directed flows are arisen. One is thermal slip at the surface of the channel 

wall. Another flow of opposite direction along the axis of the channel is controlled by 

Darcy's law. If conditions in the porous medium are established then the circulation of 

gases is appeared. In our DRM experiments, the temperature difference reached 

30 K and reagent mixture can contact catalytic layer more than eight times because 

of circulation for the stay time in reactor.  
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ELECTRIFIED STEAM REFORMING: RESISTIVE WASHCOATED SiC 
FOAMS AS INTERNAL HEATING ELEMENTS FOR HYDROGEN 

PRODUCTION 

Riccardo Balzarotti, Matteo Ambrosetti, L. Zheng, A. Beretta,  
Daniele Marangoni, Gianpiero Groppi, Enrico Tronconi 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
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enrico.tronconi@polimi.it 

In the last decade, a substantial increase of electric energy production with 

renewable intermittent sources was observed. The large availability of relatively low-

cost renewable electric energy represents a significant opportunity to decrease the 

carbon footprint of endothermic chemical processes. In particular, the application of 

this concept to the steam reforming of natural gas would provide a twofold beneficial 

effect: first, the electrically-heated reformer would prevent the combustion of 

methane (which is burnt in traditional reformers to fulfill the endothermic process 

demand), playing a crucial role in the quest for reducing CO2 emissions. Moreover, 

electric current could be used to directly convert methane into hydrogen rich streams, 

while still relying on a well-established industrial process.  

Based on this approach, electrically heated washcoated tubes (Ø 5 mm) were 

recently proposed as an innovative reactor layout for steam reforming [1]. One of the 

main drawbacks of the proposed system, however, is the scale-up of the concept. If 

bigger tubes are employed, larger negative radial T-gradients are expected, and the 

catalyst inventory per volume is reduced, as well as the hydrogen generated.   

In this work we propose a reactor concept in which electric current is forced to 

flow through the solid matrix of a SiC open cell foam, which heats up due to Joule 

effect. The reagent feed is directly heated by the silicon carbide foam and catalytic 

activity is obtained by packing egg-shell catalyst particles in the open cavities of the 

foam, as reported in [2,3]. In the first portion of the foam the gas is heated up to a 

temperature where the highly active Rh catalyst is reported to be active. As typically 

occurs in noble-metal catalyzed systems for steam reforming, at T > 550 °C the 

conversion is limited by chemical equilibrium [2,3], thus, by the heat transfer rate. 

This approach aims at obtaining a local and distributed heat generation, capable of 

sustaining effectively the heat demand of the process.  

mailto:enrico.tronconi@polimi.it
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To assess the feasibility of the concept, first the electric resistance of a SiC foam 

support (L = 10 cm, d = 3.2 cm,  = 0.9) was measured by means of a multimeter. 

The resistance was found to decrease with growing temperature up to an almost 

constant value over 300 °C. Extrapolation of the results at higher temperatures was 

considered for thermodynamic calculations.  

A thermodynamic analysis of the process was performed considering Joule 

heating of the SiC foam, and assuming both Steam Reforming and Water Gas Shift 

reactions at chemical equilibrium under adiabatic conditions. A GHSV = 5400 h–1 

referred to the total reactor volume was assumed, with a feed S/C ratio of 3.5 and an 

inlet temperature of 500 °C and 1 atm. Thermodynamic calculations show that the 

methane conversion and the equilibrium temperature of the system depend on the 

current density: with values in the range of 2-2.1 A/cm2, corresponding to a specific 

power generation of 4 W/cm3, it is possible to reach significant methane conversions. 

Experimental tests and detailed numerical simulations are ongoing to validate the 

potential of the proposed concept.  

 
Figure 1. Measurements of the electric resistance as a function of temperature (a) and 

thermodynamic simulations of equilibrium conversion and temperature vs input current (b) 

In this contribution we propose the adoption of packed SiC foams for electrified 

steam reforming of natural gas. The use Joule heating to sustain the endothermic 

Methane Steam Reforming over pelletized catalysts embedded in the SiC foam 

allows for a remarkable process intensification. 
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HEAT TRANSFER IN SLENDER PACKED BED REACTORS:  
EFFECT OF RADIATION 

Gregor D. Wehinger1, Florian Scharf2 

1Insitute of Chemical and Electrochemical Process Engineering, Clausthal University 
of Technology, Leibnizstr. 16, 38678 Clausthal-Zellerfeld, Germany,  

E-mail: wehinger@icvt.tu-clausthal.de  
2BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany 

Radial heat transfer is one of the most challenging aspects of a safe, stable, and 
economic operation of packed bed reactors [1]. However, the comprehensive 
description of heat transfer is far from trivial. During the last two decades, particle 
resolved computational fluid dynamics (PRCFD) has enabled researchers to gain 
insights into transport phenomena in packed beds that are nearly impossible with 
experiments [2]. This approach takes the actual packed bed structure into account 
and calculate momentum, heat, and mass transport within the finite volume method. 
With PRCFD, we showed in previous studies that thermal radiation significantly 
contributes to the overall heat transfer mechanism [3] in slender packed beds and 
can therefore also influence the local reaction rate [4]. Since PRCFD is still too 
computationally demanding for daily engineering problems, simplified engineering 
models are widely applied. In this contribution, we compare heat transfer in packed 
beds calculated from PRCFD simulations and from a classical 2D plug flow model 
with and without thermal radiation conditions. 

We followed our PRCFD approach and generated one packed of spheres and 
one packed bed of rings, for which heat transfer simulations were carried out over a 
wide range of inlet/wall temperatures and particle Reynolds numbers. In order to 
compare the classical 2D plug flow heat transfer model [1], the wall Nusselt number 

 and the effective thermal conductivity of the bed were governed from the axial 
temperature profile of the CFD simulations. This is described in very detail elsewhere 
[5]. The obtained parameters are compared to well established correlations by Martin 
& Nilles for  and Zehner-Bauer-Schlünder (ZBS) for Λ ,  [1]. Lastly, radial 
temperature profiles are calculated with the obtained parameters of the CFD 
simulations. 

Figure 1 (A) and (B) show impressively the intensified surface temperature of the 
spheres in the near-wall region. Due to the extra heat transfer mechanism of thermal 
radiation, the particles in the near-wall region show in general higher temperatures 
than for the simulation neglecting thermal radiation. This effect is reflected by , 
which increases with the temperature level. However, the correlations from Martin & 
Nilles underpredict this near-wall phenomenon, see Figure 1 (C). Contrarily, the 
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process has been assessed considering as figures of merit: the faradaic efficiency 

(FE) towards reaction products, HCOO– concentration ([HCOO–]), HCOO– rate and 

the consumption of energy per kmol of HCOO–. Promising results were obtained 

operating at ambient condition of temperature and with a water flow in the CO2 

stream of 0.5 g·h–1, obtaining [HCOO–] up to 26 g·L–1 with a FE towards HCOO–, a 

HCOO– rate and a consumption of energy per kmol of HCOO– of 55 %, 

1.28 mmol·m–2·s–1 and 266 kWh·kmol–1, respectively. These results were achieved 

operating with a Bi catalyst load of 0.75 mg·cm–2 and with a current density of 

45 mA·cm–2. 

Further tests were carried out with the aim of improving the performance of the 

electrocatalytic reduction of CO2 to HCOO–, analysing the influence of the catalyst 

loading in the CCME and the current density supplied to the electrochemical filter 

press reactor. When the catalyst load and the current density were raised from 0.75 

to 1.5 mg·cm–2 and from 45 to 200 mA·cm–2, respectively, [HCOO-] up to 46.5 g·L–1 

was obtained but at expenses of an important decrease in the Faraday Efficiency 

towards HCOO-. Further research is still required to improve the performance of the 

electrocatalytic conversion of CO2 to HCOO– using Bi-CCMEs for a future 

implementation of the electrochemical process at industrial scale. 
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THE WAY TO VALIDATE A NEW AMMONIA SYNTHESIS CATALYST: 
A COLLABORATION BETWEEN CASALE AND CLARIANT 

Pierdomenico Biasi1*, Sergio Panza1, Rene Eckert2, Stephan Reitmeier2, 
Andreas Reitzmann2, Stefan Gebert2 

1Casale SA, Lugano, Switzerland, *p.biasi@casale.ch 
2Clariant Produkte (Deutschland) GmbH, Heufeld / Munich, Germany 

Catalytic ammonia synthesis from H2 and N2 represents one of the most important 

industrial reactions today. The catalyst used in this reaction is made from iron oxide 

with small amounts of other oxides added as promoters to enhance activity and 

stability. Despite the Haber-Bosch process being more than 100 years old [1-3], only 

incremental improvements have been achieved until recently. Combining the catalyst 

expertise of CLARIANT and the engineering knowledge of CASALE, a breakthrough 

has been realized leading to the new ammonia synthesis catalyst AmoMax®-Casale. 

The catalyst is a customized design by CLARIANT for CASALE reactors (patent 

pending) with significantly improved activity compared to state-of-the-art iron-based 

catalysts. When introducing a new catalyst into the market, performance evaluation is 

of utmost importance, but simple tests of the catalyst in powder form are not 

representative enough for industrial applications and only suitable for screening 

purposes. Therefore, a precise and rigorous methodology must be applied. In our 

paper, we report on the general guidelines that must be taken into account, 

exemplified by the development of the AmoMax®-Casale catalyst.  

To reliably validate a new catalyst, laboratory-scale tests should be 

representative of the industrial catalyst. Thus, catalytic and mechanical tests are 

performed with the final form and shape of the catalyst. During catalytic tests, the 

temperature profile in the catalyst bed is measured and correlated with the heat 

exchange between oven and reactor. Subsequently, a systematic modelling of the 

obtained data is applied in order to understand the performance of the catalyst under 

industrial conditions. The information acquired is used to compare the new catalyst 

with the best available state-of-the-art catalyst technology. In case of superior activity 

of the new catalyst, as next step in-depth mechanical stability characterizations are 

performed to confirm the robustness of the catalyst. This includes simulations and 

experiments of friction between the catalyst pellets/granules and the walls of the 

reactor, crush strength and simulations of start-up/shut-down of industrial reactors. If 
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EFFECTS OF FLY ASH DEPOSITION ON THE PERFORMANCE OF 
SCR MONOLITHS: DEVELOPMENT OF A MICRO-SLAB REACTOR 

FOR KINETIC AND MASS TRANSFER STUDIES 

Lanza A., Usberti N., Beretta A.* 

Laboratory of Catalysis and Catalytic Processes, Politecnico di Milano, Milano, Italy,  
* alessandra.beretta@polimi.it 

Introduction 

Vanadium-based catalysts are used worldwide in the SCR-DeNOx units of coal-
fired power plants in the form of honeycomb monoliths or corrugated plates [1]. Three 
main chemical processes are catalyzed: the reduction of NOx by NH3, the oxidation of 
Hg0 into HgCl2 [2], the oxidation of SO2 to SO3 [3]. It is well known that NOx reduction 
suffers from strong mass transfer limitations but it is less known that also Hg0 
oxychlorination (highly desired, due to the easier removal of Hg2+ rather than 
elemental Hg) is also mass-transfer limited. Both processes are thus largely affected 
by the catalyst morphology and by changes of it due to the deposition of inorganics 
from the flue gas. Indeed, fly ash deposition is a known major factor of deactivation 
that periodically causes the replacement of catalyst layers; this is a tremendous 
economical factor, considering the huge catalyst inventory of SCR reactors (roughly 
1 m3 catalyst/MW of generated power). Thus, it is of keen interest to understand if the 
loss of catalytic performances is mainly due to chemical or morphological effects, 
which may support the identification of optimal strategies for catalyst re-juvenation. In 
this work, samples of a commercial monolith unloaded from full scale SCR reactors 
at different time on stream (1500 and 35000 h) were studied and compared with the 
reference fresh formulation. Kinetic studies are traditionally carried out at the lab-
scale by using powdered catalysts, where the contribution of diffusion is negligible; 
however, an objective of this study was to preserve the wall integrity and study the 
role of intra-porous mass transfer limitations. At this scope, a simple micro-slab 
reactor was developed, where the reactor temperature is the “tuning” parameter 
through which the catalyst operating regime can be turned from fully chemical to 
mass-transfer controlled. The well defined flow pattern of the micro-slab reactor 
allowed for a simple modelling analysis that, together with an extensive catalyst 
characterisation, supported the identification of the factors responsible for the decay 
of activity. 

Results 

A 3.5 cm long and 6 mm wide micro-slab was cut from each monolith and 
inserted along the axial coordinate in a 6-mm wide quartz reactor. Two identical 
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FACILE COATING OF Co3O4 ON OPEN-CELL METALLIC FOAMS 
FOR N2O CATALYTIC DECOMPOSITION 

Phuoc Hoang Ho1,2, Magdalena Jabłońska3, Giancosimo Sanghez de Luna1, 
Regina Palkovits2, Gérard Delahay4, Giuseppe Fornasari1, Angelo Vaccari1, 

Patricia Benito1 

1Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale 
Risorgimento 4, 40136, Bologna, Italy 

2Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, 
Worringerweg 2, 52074 Aachen, Germany 

3Institute of Chemical Technology, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, 
Germany 

4Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt des 
Matériaux, UMR5253 CNRS, ENSCM, UM, 240 Avenue du Professeur Émile 

Jeanbrau, 34296 MONTPELLIER cedex 5, France 
*patricia.benito3@unibo.it 

Open-cell foams, a special member of the 3D structured supports family with high 

porosity (void fraction of 90-95 %) and geometrical surface area (e.g., 7800 m2 m–3 

for 450 m cell-size with 85 % porosity), are commercially available made by single 

metals or alloys [1, 2]. These materials offer extra-advantages in heterogeneous 

catalysis such as enhanced mass and heat transfer as well as low pressure-drop in 

comparison to pelletized catalysts. A lot of efforts have been made to homogenously 

coat the complex shape of the foams with catalytic films. For instance, spin-coating 

rather than conventional dip-coating is preferred when dealing with small-pore 

metallic foams [3]. Moreover, we proposed an electrochemical route to prepare 

structured catalysts [1]. It consists in the electro-generation of a basic media in the 

vicinity of the foam immersed in an aqueous solution of metal nitrates, hence it is 

possible to selectively precipitate hydroxides/oxides directly on the structured 

support. The main challenges to overcome, due to strict requirements of 

heterogeneous catalysts, are electrodeposit enough coating with controlled 

composition and high stability under reaction conditions. 

In view of the above challenges, this study focuses on the electrodeposition of 

Co(OH)2 on FeCralloy open-cell foams of relatively high pore density (80 ppi) to 

prepare, after calcination at 600 °C, Co3O4 spinel coatings active in the N2O 

decomposition. The properties of the catalytic films (morphology, surface area, and 

redox behavior) are compared with those of a Co3O4 precipitated sample. To our best 

knowledge, the use of structured catalysts made by Co3O4 coated on open cell 
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EXPERIENCE IN OPERATIONG A PILOT PLANT FOR THE SEWAGE 
SLUDGE UTILIZATION IN A FLUIDIZED BED OF CATALYST 

Dubinin Y.V., Yazykov N.A., Fedorov A.V., Yakovlev V.A. 

Boreskov Institute of Catalysis SB RAS, 5 Lavrentieva str.,  
Novosibirsk, Russia, 630090, E-mail: dubinin@catalysis.ru 

Today, one of the acute problems facing humanity is the formation of a huge 

amount of waste. Among them are the wastes from sewage treatment facilities and 

communal services – sewage sludge. Effective utilization of such materials is in itself 

an urgent task, attracting the attention of the world scientific community. In turn, the 

possibility of obtaining additional benefits in the form of, for example, thermal energy 

makes work in this area extremely attractive. 

Most of the currently existing methods for such types of waste processing have a 

number of significant drawbacks, such as low efficiency, the formation of significant 

amounts of pollutants, the high operating cost of the process, etc. Moreover, in some 

countries, the main part of such waste is sent to landfill, which creates even more 

environmental problems and limits the use of land allocated for storage. 

In the Boreskov institute of catalysis has been developed and successfully applied 

the technology for the processing of fuels and wastes, which consists in combustion of 

raw materials in a fluidized bed of catalyst. The implementation of this technology 

makes it possible to avoid most of the drawbacks characteristic of traditional 

combustion methods (layered, flare, and in a fluidized bed of inert material). Moreover, 

the technology is universal and can be used for solid, liquid and gaseous materials, 

including those with high ash content, humidity and volatile content. 

At the moment, a pilot plant for the utilization of sewage sludge in a fluidized bed 

of catalyst has been commissioned. The installation was built on the territory of the 

Omsk water treatment facilities (JSC “Omskvodokanal”) and covers 30 % of the need 

for sludge combustion. The plans include the construction of two more reactors, 

which will provide 100 % combustion of the sludge formed in the city of Omsk, and 

will also allow the restoration of already filled dumps. 

This work demonstrates the description and capabilities of the created pilot plant, 

its technological features and advantages in comparison with existing analogues. In 

addition, the first experience of operating the plant is also described. 
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ADVANCED FLUE-GAS CLEANING BY WET OXIDATIVE 
SCRUBBING USING NaClO2 AQUEOUS SOLUTIONS 

Domenico Flagiello, Alessandro Erto, Amedeo Lancia, Francesco Di Natale 

Department of Chemical, Materials and Production Engineering, University of Naples 
Federico II, P.le Tecchio, 80 - 80125 Naples, Italy. domenico.flagiello@unina.it 

Introduction 

Nowadays, the SOx and NOx emission control from flue-gas still represents one of 

the most critical issues in the field of energy generation, municipal waste incineration, 

internal combustion engines and industrial production and manufacturing processes. 

It is widely known that SOx emissions can be limited and almost eliminated by 

using fuels with low-sulphur content, which are typically more expensive. Differently, 

NOx emissions can be partially controlled by improving the combustion technologies. 

For several applications, after-treatment processes are the only available options to 

comply with regulations. These technologies include dry and semi-dry (dry-scrubbers 

and spray dryer) or wet scrubbing columns (wet-scrubbers) for SOx capture, and 

Selective Catalytic Reduction (SCR) or thermal Selective Non-Catalytic Reduction 

(SNCR) units for NOx control. Despite the efforts to improve these technologies and 

their integration, the combined use of these units requires high capital (CAPEX) and 

operation and maintenance (O&M) costs, and they have a large footprint for the plant 

installation. These constraints are even more relevant in the case of retrofitting of 

existing systems and for the treatment of exhaust gases from heavy-duty diesel 

engines, including those used for the propulsion and for auxiliary systems in the 

marine and train applications. 

In this work, we developed a promising technology for the simultaneous SOx and 

NOx emissions control as an alternative to traditional after-treatment systems 

adopted, which involve the combined use of de-SOx and de-NOx units. The process 

consists in a wet scrubbing of SOx and NOx by an aqueous solution doped with 

sodium chlorite (NaClO2) that allows the optimized capture and subsequent oxidation 

of SOx and NOx to sulfates and nitrates, respectively [1-4]. This work is an upgrade of 

our previous works [3,4], where de-SOx and de-NOx treatment systems have been 

studied separately by applying wet oxidative technology.  

The de-SOx and de-NOx scrubbing experiments were performed in a fully 

instrumented pilot-scale scrubber [3,4], having a DN 100, and equipped with 
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Mellapak 250.X structured packing with height of 892 mm. A simulated flue-gas 

stream with a constant gas flow rate of 32 m3/h (1.15 m/s) containing 500 ppmv of 

SO2 and 1030 ppmv of NOx at 60 °C was used as a reference case. The scrubbing 

liquid was an aqueous solution containing a concentration of NaClO2 ranging from 0 

to 1 % w/w, fed with liquid-to-gas ratios between 1.25-4.06 L/m3 at 25 °C.  

Key Results 

The experimental results showed that the scrubber was able to completely 

remove the SO2 and to reduce NOx emissions up to 65%. Moreover, the experiments 

allowed determining the establishment of acidic conditions as the main oxidation 

pathway and removal mechanism, which enhanced the oxidation rates of NOx. 

Indeed, the wash water pH resulted to be lower than 7 in all the experiments, thanks 

to the presence of SO2 in the flue-gas. The operating dosage of NaClO2 that allowed 

the maximum NOx removal tested (65 %) was equal to about 12 times the moles of 

NOx in the fed gas, while for SO2 was about 1.1 for a complete removal according to 

Flagiello et al. [3]. Although an excess of NaClO2 was necessary, the data suggested 

that higher removals for NOx could be achieved by increasing the NaClO2 loading or 

liquid flow rate compared to the de-NOx experiments by Flagiello et al. [4]. 

This process can be used to design absorption towers in which de-SOx and de-

NOx operation are combined in one device, allowing the compliance with the most 

stringent emissions regulations in force so far and simultaneously assuring lower 

CAPEX and O&M costs and easier installation than conventional after-treatment 

systems. 
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THERMAL DEGRADATION OF NYLON-6 AND REAL MIXTURES OF 
SOLID PLASTIC WASTE. AN EXPERIMENTAL AND KINETIC 

MODELLING STUDY 
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Alessio Frassoldati1, Alessandra Beretta2, Luca Lietti2, Tiziano Faravelli1 
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The current challenges related to plastic waste disposal motivates the renewed 
interest in understanding the chemical and physical phenomena involved in the 
thermal treatments of plastic polymers, such as pyrolysis and gasification [1]. 
Embracing the current trends and incentives towards the implementation of circular 
economy strategies for the production of energy and goods, chemical recycle of solid 
plastic waste (SPW) is attracting the interest of petrochemical and oil and gas 
industries.  

Pyrolysis is a promising technology for SPW that are difficult to recycle 
mechanically and today are disposed in landfills. This is the case of complex 
mixtures, typically containing polyethylene (PE, ~40 % wt.), polypropylene (PP, 
~25 % wt.), polystyrene (PS, ~15 % wt.), polyethylene terephtalate (PET, ~8 % wt.), 
polyvinylchloride (PVC, ~7 % wt.), and polyamide (PA, ~5 % wt.). Pyrolysis 
processes have the advantage of being feedstock flexible, thus capable of treating 
heterogeneous mixtures.  

A fundamental understanding of polymer decomposition chemistry and yields of 
products formation can be achieved by coupling laboratory experiments such as 
thermogravimetric analyses and gas cromatography-mass spectrometry 
measurements (GC-MS) to semi-detailed kinetic models. As reported in Figure 1, 
plastic polymers decomposition occurs in a quite tight temperature window (~50 °C), 
with the exception of PVC whose dechlorination starts ~100-150 °C earlier compared 
to PS and PE, respectively. Detailed kinetic models allow to investigate the effect of 
different parameters (e.g. temperature, residence times, feedstock variations, etc.) 
thus allowing improved design of pyrolysis reactors and downstream separation and 
purification units. Developing upon existing kinetic subsets for PE, PP, PS, PVC and 
PET [2-7], this work presents and discusses the first semi-detailed kinetic model for 
PA. 
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Figure 1. TGA analysis of single plastic 
polymers and of a real mixture. Symbols: 
experimental measurements performed at 
POLIMI for PA (open squares) and for the 

mixture (full circles), lines: results from 
model simulations 

The scarce amount of information available in the literature mostly focuses on the 
most abundant polyamide, Nylon-6. Taking advantage of this limited but useful 
amount of information, Nylon-6 has been selected as the representative of the 
polyamide fraction of SPW (~5 % wt.). The model has been developed based upon 
reference reaction classes and kinetic parameters, and is validated by comparison 
with the limited number of TGA/GC-MS data. Additional measurements have been 
performed at Politecnico di Milano for single polymers, including PA, and mixtures of 
increasing complexity (i.e. from binary to real SPW samples), allowing to test the 
predictive capabilities of the model.  

The model correctly reproduces the loss of mass and the distribution of the main 
products: Nylon-6 monomer (2-azacycloheptanone, up to 90 % wt) and its dimer (1,8‐
diazacyclotetradecan‐2,9‐dione, up to 10 % wt.). Other minor products are mentioned 
in literature (e.g. cyclohexanone, cyclohexenone, hexanenitrile, hexenenitrile) but, 
based on the current state of the art, quantitative comparisons are not conclusive. As 
a further proof of the reliability of the POLIMI kinetic model for thermal degradation of 
plastic polymers, results for real SPW samples are also presented and discussed.  
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In recent years, there has been an increased growth in waste from electrical and 

electronic equipment (WEEE). With the evolution of technology, innovation cycles are 

becoming shorter and, consequently, the production of new electronic equipment 

increases along with their replacement with more innovative equipment, making 

electrical and electronic equipment (EEE) a fast growing source of waste [1]. About 

20-25 % of WEEE is composed of plastic. Part of the selected plastic can be directed 

to mechanical recycling, while the remaining part of the plastic will be discarded for 

landfill or incineration. A possible alternative to recover the material is pyrolysis, 

where the waste is heated in the absence of oxygen; the products of this degradation 

can be used as feedstock for the petrochemistry, including fuels [1,2]. The polymers 

most commonly found in WEEE are: acrylonitrile butadiene styrene (ABS) 30 %, high 

impact polystyrene (HIPS) 25 % and polycarbonate (PC) 10 % [2]. Pyrolysis of 

styrene-based polymers such as ABS, HIPS, PS and mixtures has been reported to 

produce mostly aromatic products [2-3]. In this work, pyrolysis of a WEEE plastic 

mixtures (originated from the casings from a TV and a Mixer Stand), in varied 

proportions, were carried out in a reactive distillation reactor. 

The WEEE plastics were provided by Ambigroup. The samples were washed and 

crushed. The thermal pyrolysis experiments were carried out using an unstirred glass 

reactor in reactive distillation system at atmospheric pressure [4]. The reactor was 

loaded with 10 g of the plastic waste material and before the experiments start, the 

reactor was purged with nitrogen to ensure an inert atmosphere. After that, the oven 

is heated to the required temperature with a heating rate of 10 °C/min. This final 

temperature was maintained during 90 min. On top of the reactor there is a liquid 

collector to store the liquid formed. On top of this collector, there is a cooling system, 

where the temperature of cooling water is 20 °C to control the outflow of lighter 

products. The yield of the products obtained for thermal pyrolysis of a WEEE plastic 

mixtures (ABS and PS), with different compositions, are shown in Figure 1, for the 

set point temperature of 500 °C with a reaction time of 90 min. 
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Figure 1. Pyrolysis yields (wt %) for different mixtures of plastics, at 500 °C and 90 min 

From Figure 1 it is clear that the largest amount of products formed are in the 

liquid phase. The conversion with 100 % of waste PS showed the highest yield of 

solid products (39 %). ABS showed the least yield of solids, but it is important to note 

that even a small proportion of ABS causes a very significant decrease in solid yield, 

in comparison to the expected weighted average of the two individual plastics. 

The internal temperature of the reactor was also measured during the 

experiments and it is possible to observe (see Figure 2) that there is a significant 

difference between the measured temperature and the Set Point temperature (SP), 

and that this difference is partially related to the reaction taking place. Moreover, it 

can be seen that there is a difference in the profile when there is a single type of 

plastic when compared to the co-processing of different types of plastic.  

 
Figure 2. Internal temperature of the reactor with different mixtures of plastics 
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Polystyrene (PS) is one of the most common plastics found in the waste of 

electric and electronic equipment (WEEE) [1]. Mechanical recycling of plastic from 

WEEE is difficult due to the complicated recycling processes required to achieve 

pure polymer separation [1]. Chemical recycling is an alternative to treat this kind of 

waste since it provides a way to convert the waste plastic, even when it is composed 

of mixed components, into valuable products for the chemical industry [2]. This work 

focuses on the comparison of thermal and catalytic pyrolysis of both virgin PS and 

waste PS from WEEE. Preliminary experiments were conducted in a simultaneous 

TG/DSC apparatus to study the kinetics for both the thermal and catalytic 

degradation processes. The pyrolysis reactions were performed in a bench-scale 

reactor that works as a reactive distillation system, operating in semi-batch mode, 

under atmospheric pressure [3]. In the beginning the feedstock is loaded to the 

reactor and constant removal of the products is possible when the compounds 

achieve a sufficiently low molecular weight to exit the reactor. The reactor operates 

under reflux conditions, which permits further cracking of heavier compounds. 

Different temperatures were used for thermal and catalytic pyrolysis (400, 450 and 

500 °C) using a reaction time of 90 minutes.  

 

Figure 1. Yield of products for thermal and catalytic pyrolysis at different set-point temperatures 

0

20

40

60

80

Liquid Solid Gas

Yi
el
d
 (
%
)

PSW+HZSM‐5 (400 °C) PSW (400 °C) PSW+HZSM‐5 (450 °C)

PSW (450 °C) PSW+HZSM‐5 (500 °C) PSW (500 °C)



OP-III-7 

199 

From Figure 1 it is possible to see the yield of liquid, solid and gas products for 

the pyrolysis of waste PS with HZSM-5. It is observed that the catalyst tested  

(HZSM-5) has only a slight effect on the overall behaviour. At 500 °C the liquid yield 

obtained for the thermal pyrolysis is 58 % and for the catalytic pyrolysis 56 %. The 

gas and liquid products were analysed using gas chromatography. The analysis of 

the liquid products (Fig. 2) shows that, for both thermal and catalytic pyrolysis, the 

products obtained with higher amounts were aromatics in the range between C7 to 

C9. The C7 hydrocarbons probably correspond to toluene and C8 hydrocarbons 

correspond mostly to styrene. The C9 hydrocarbons might correspond to alpha-

methylstyrene. In case of catalytic pyrolysis there is also some C6 formation, which 

corresponds to benzene.  

 

Figure 2. Liquid composition for thermal and catalytic pyrolysis in the reactor of waste PS 

Thus, the pyrolysis of waste PS produces hydrocarbons that may be reused in 

the chemical industry, as feedstock to produce new plastics with the Circular 

Economy approach in mind. 
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The DLP technology consists of an indirect slurry-based process that uses a 
photo-active material to initiate binding. After printing the structure layer by layer by 
illuminating cross-sections of the design, a debinding and sintering step is required 
to obtain the final structured adsorbents. For the ImmoAmmo adsorbent, the silica 
support will be printed after which various amines are impregnated or grafted on the 
structured material. 

Pastes for 3D printing are developed for both the K-HTC and ImmoAmmo 
sorbents. Several 3D-structures, designed with the aid of mathematical modelling 
(CFD), have been printed and post-processed (Figure 1, b & c). For the ImmoAmmo 
sorbents a recipe to graft amino silanes onto the 3D-structured silica support is 
developed. The resulting sorbent shows similar capacities to the grafted silica beads. 
Also the printed and post-processed K-HTC materials keep their original CO2 
capture capacity compared to the starting sorbents.  

The 3D printed adsorbents are evaluated against traditional packed bed of 
pellets in Pressure Swing Adsorption (PSA) and Vacuum PSA processes for CO2 
capture in Natural gas combined cycle (NGCC) and decarbonized H2 production. 
The adsorption characteristics (equilibrium isotherms and kinetic parameters) for the 
relevant gaseous components (CO2, N2, H2O) as well as pressure drop for different 
structures are measured. Single and multi-column models for the performance of the 
SEWGS and ImmoAmmo 3D-printed solution for the selected applications have 
been set up. The models are calibrated for operation at the high-flow rates to obtain 
high productivity rates, capture rate and efficient utility use. The experimental data 
are used to validate the multi-cycle models that determine the potential of the 
structures for productivity increase.  
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COUPLING ELECTROSTATIC CLASSIFIER WITH SPARK 
DISCHARGE GENERATOR FOR GENERATION OF MONODISPERSE 
CATALYST FOR SINGLE-WALLED CARBON NANOTUBE GROWTH 

Dmitry V. Krasnikov1, Nicole E. Semenova1, Daniil A. Ilatovskii1,  
Boris Yu. Zabelich1, Vsevolod Ya. Iakovlev1, Vladislav A. Kondrashov1,  

Alena A. Alekseeva1, Eldar M. Khabushev1,2, Albert G. Nasibulin1,2 

1Skolkovo Institute of Science and Technology,  
Nobel street 3, 121205 Moscow, Russia, d.krasnikov@skoltech.ru 

2Aalto University, PO. 16100, 00076 Espoo, Finland 

Single-walled carbon nanotubes (SWCNTs) are one of the most promising 

materials for various applications owing to the set unique physical, structural, and 

electronic characteristics. Optoelectronic and biomedical applications (e.g. 

transparent electrodes, single-photon emitters, thin film transistors, drug delivery 

agents) require precise control of SWCNT morphology and electronic properties 

corresponding to the structural aspects of an individual nanotube.  

Nowadays, one of the most promising methods addressing the fine tuning of 

individual SWCNT characteristics is the aerosol chemical vapor deposition (CVD) 

technique – a specific case of floating catalyst CVD. While the structural aspects of 

SWCNTs are mainly affected by the growth conditions and the catalyst nature 

(composition, diameter distribution, preparation technique, etc.), the methods for the 

catalyst formation during the aerosol CVD show a complex mutual dependence of 

SWCNT characteristics on growth parameters enhanced by the lack in control 

number size distribution and stability in nanoparticle generation. Recently, we have 

shown the spark discharge generator of aerosol nanoparticles to provide a spatial 

separation of the nanoparticle formation and carbon nanotube nucleation processes: 

the systematic study has shown the generator to provide a facile and repeatable 

route to precisely control the size of the catalyst particle and, consequently, SWCNT 

growth [1,2].  

In this work, we enhance aerosol CVD synthesis based on a spark discharge 

generator of nanoparticles with an electrostatic classifier to provide monodisperse 

catalyst particles for single-walled carbon nanotube growth. In a simple way, 

electrostatic classifier “cuts” the polydisperse flow basing on a principle that the 

velocity of a charged aerosol particle in an electric field is directly related to its 

diameter (via mobility). Generally, catalytic nanoparticles produced by spark 
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discharge generator are transferred by carrier gas (N2) into the electrostatic classifier 

with following introduction to the reactor zone to form (or not to form depending on 

size and reaction conditions) SWCNTs. The resulting aerosol is transferred to the 

second DMA for monitoring the possible process of carbon nanotube synthesis.  

By variation of the operating voltage, aerosol particles with a particular diameter 

are segregated and carried into aerosol reactor. Using a mobility-based separation 

technique of aerosol particles, we not only define the diameter range of the Fe 

particles active in SWCNT growth but also directly track the influence of the catalyst 

composition on the SWCNT growth parameters. The method opens a new avenue 

for precise catalytic experiments as well as fine synthesis processes. In this we work 

we show, the advances of the method examining the SWCNT-based thin conductive 

films. 
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Rh- AND Pt-DOPED g-C3N4 FOR THE PHOTOCATALYTIC 
HYDROGEN EVOLUTION FROM AQUEOUS SOLUTIONS OF 

TRIETHANOLAMINE UNDER VISIBLE LIGHT 

Zhurenok A.V.1, Kovtunova L.M.1, Vasilchenko D.V.2, Kozlova E.A.1 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia 
2Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia 

angelinazhurenok@gmail.com 

One of the most urgent areas of sustainable energy development is the 

development of solar energy. This process is constrained by the fact that there are 

few catalysts that are activated under visible light and are capable of water splitting 

[1]. One of the promising photocatalysts attracting attention is graphitic carbon nitride 

(g-C3N4), which has a number of important advantages such as simple synthesis, 

suitable bandgap for water reduction and oxidation, as well as chemical and thermal 

stability. A factor limiting its high catalytic activity in the photocatalytic hydrogen 

evolution is the small surface area of g-C3N4 since strong agglomeration of particles 

always occurs in g-C3N4 due to high-temperature calcination. In this regard, it is 

important to study new processes for the synthesize of g-C3N4 with a large surface 

area. Increasing the surface area of g-C3N4 is considered to be an effective way to 

increase its photocatalytic activity. The aim of this work was to synthesize highly 

active photocatalysts based on g-C3N4 with a low content of noble metals such as Pt 

and Rh.  

The suspension containing melamine and glucose was placed in autoclave and 

heated at 180 °C for 12 hours. Thereafter, the obtained precursor was calcined at 

550 °C for 3 hours with a heating rate of 0.5 °C min–1. The photocatalysts Pt0.5/g-

C3N4 and Rh0.5/g-C3N4 were prepared by chemisorption using the precursors of 

binuclear complexes (Me4N)2[Pt2(OH)2(NO3)8] and [Rh2(OH)2(H2O)8](NO3)4, based on 

the method described earlier [2]. Subsequent samples reduction was carried out in 

H2. The photocatalytic hydrogen evolution was measured in an aqueous-alkaline 

solution of triethanolamine (TEOA – 10 vol. %, 0.1 M NaOH) under visible light 

irradiation ( = 425 nm). 

An increase in the temperature at which Pt0.5/g-C3N4 photocatalyst was reduced 

in H2 led to an increase in the photocatalytic activity due to the complete reduction of 

Pt2+ to Pt0. In the case of Rh0.5/g-C3N4, it was observed that an increase in the 

reduction temperature in H2 to 400 °C leads to an increase in the hydrogen evolution 
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rate ≈ 2 times compared with the sample not reduced in H2, while the reduction of 

photocatalysts at temperatures from 100 up to 300 °C had no positive effect on the 

hydrogen evolution rate. Probably, this may be due to the fact that Rh on the g-C3N4 

surface is already in the reduced form. The results of the study of activity are 

presented in Figure 1. 

 
Figure 1. The influence of photocatalysts temperature synthesis on the activity in the hydrogen 

evolution 

As a result of optimization of the catalyst preparation procedure, the most active 

sample was Pt0.5/g-C3N4 – 8300 mol gcat
–1 h–1 reduced in H2 at 400 °C for 1 h with 

apparent quantum efficiency at a wavelength of 425 nm equal to 4.9 %. The catalytic 

activity of Rh0.5/g-C3N4 sample (H2, 400 °C, 1 h) was 4430 mol gcat
–1 h–1, and 

apparent quantum efficiency was 2.6 %. 
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UREA-PERSULFATE FUEL CELL COMBINED WITH FORWARD 
OSMOSIS FOR A CONTINUOUS GENERATION OF POWER AND 

WATER FROM URINE 

Jiseon Kim, Kangwoo Cho* 

Pohang University of Science and Technology (POSTECH), Pohang, Korea 
*kwcho1982@postech.ac.kr 

The wastewater fuel cell system has been investigated in the water-energy nexus 

framework, by simultaneously achieving power generation and water treatment. In 

particular, the direct urea fuel cell (DUFC) can recover chemical energy from waste 

urea in toilet wastewater using the urea oxidation reaction (UOR). Nickel-based 

catalysts have been up-to-date the most widely investigated electrocatalysts to 

reduce the overpotential and kinetic barrier for the UOR, while combination with the 

secondary elements (Co, Fe) has been reported to enhance the UOR activity. This 

study explored the UOR on Ni-based anodes prepared by electro-deposition of mixed 

metal (oxy)hydroxide (NiFeOx or NiCoOx with variable mixing ratios) on three-

dimensional foam base (e.g., Ni foam). Compared to monometallic Ni (hydr)oxide, 

additions of the secondary elements (Fe and Co) were found to accelerate the 

formation of NiOOH (the active intermediate for UOR), by partial charge transfer 

among the mixed metals. The highest UOR activity was marked by NiCoOx (Ni:Co = 

9:1) electrodeposited on Ni foam to be employed as an anode in the DUFC. In 

addition, this study utilized persulfate ion (stronger oxidant than molecular oxygen) as 

the electron acceptor. A comprehensive chemical reactor engineering was performed 

to maximize the power generation from urea solutions, by altering the carbon-based 

cathode materials (e.g. carbon paper, Pd/graphite felt, activated carbon/graphite), pH 

of anolyte/catholyte, and urea concentrations. The maximum power density of DUFC 

was observed to be 1.37 mW cm–2 with N-doped activated carbon/graphite cathode, 

anolyte with 0.33 M urea at pH 13, and catholyte with 1 M persulfate at pH 2.25. The 

anolyte pH was found to be the principal parameter. The DUFC was further combined 

with an alkaline-resistant forward osmosis (FO) membrane for a continuous 

production of clean water under steady urea concentration in the anolyte and power 

generation. The novel FO-DUFC system achieved nearly constant power density (1.2 

- 1.55 mW cm–2) for 5 h during a constant load discharge. The current efficiency of 

urea degradation was estimated to be 15.2 %. Operation with an artificial urine 
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WATER TREATMENT BY A TUBULAR PHOTOELECTROCATALYTIC 
REACTOR WITH ELECTROCHEMICALLY SELF-DOPED TiO2 

NANOTUBE ARRAYS 

Hyeonjeong Kim, Eunju Hwang, Kangwoo Cho* 

Pohang University of Science and Technology (POSTECH), Pohang, Korea 
* kwcho1982@postech.ac.kr 

Electrochemical self-doping has been evinced to be a plausible way to enhance 

the electrochemical (EC) and photo-electrochemical (PEC) activities of TiO2 nano-

structures in mild conditions (room temperature and atmospheric pressure) for water 

splitting and purification among other purposes [1]. The cathodic polarization would 

affect the level of self-dopants (Ti3+ and oxygen vacancy) to reduce the bandgap by 

introducing additional energy levels in forbidden band gap, which could improve light 

absorbance, electrical conductivity, capacitance, and charge transfer depending on 

the doping level [2]. We herein report the effects of primary doping conditions on the 

physico-chemical properties and photocurrent generation for the self-doped TiO2 

nanotube arrays (TNA) for potential applications in PEC water treatment within a 

novel batch tubular PEC reactor. A systematical interrogation was performed for the 

TNA prepared by anodization of Ti plate that were subject to variable regimes of 

applied potential bias, duration and pH of electrolyte during the cathodic polarization. 

Diffuse reflectance spectroscopy (DRS), Ultraviolet photoelectron spectroscopy 

(UPS) and X-ray photoelectron spectroscopy (XPS) were utilized to estimate the 

band alignment and surface oxidation state of Ti. Incident photon-to-current 

conversion efficiency (IPCE) was assessed under illumination of UV and visible light, 

while the rates of a model organic compound (Polyacrylic acid, PAA) degradation 

were evaluated within the tubular PEC reactor. A cylindrical UV lamp was inserted 

into the pipe-shaped self-doped TNA to irradiate in inner TNA surface as a light 

source, while Ti rods were utilized for the PEC application (Figure 1). The anatase 

crystal formation in TNA during pre-treatment of atmospheric annealing at 450 °C 

sharply deteriorated the faradaic efficiency of subsequent self-doping so that the 

cathodization current and duration effectively altered the rate of PAA degradation. 

The pH of the cathodization electrolyte was found to switch the relative level of Ti3+ 

on surface of TNA and IPCE from 300 to 400 nm. DRS spectra shows comparable 

UV absorbance for UVA range, whereas substantial increases in visible light 
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MACHINE LEARNING FOR OPTIMIZATION OF SINGLE-WALLED 
CARBON NANOTUBE SYNTHESIS BY AEROSOL CVD REACTOR 

Eldar M. Khabushev1,2, Dmitry V. Krasnikov1, Vsevolod Ya. Yakovlev1,  
Julia V. Kolodiazhnaia1, Orysia T. Zaremba1, Albert G. Nasibulin1,2 

1Skolkovo Institute of Science and Technology,  
Nobel street 3, 121205 Moscow, Russian Federation, eldar.khabushev@skoltech.ru 

2Aalto University, PO. 16100, 00076 Espoo, Finland 

Unique properties of single-walled carbon nanotubes (SWCNTs) make them 

prospective material to be implemented in different areas from biomedicine to 

nanoelectronics [1]. A key step in the successful promotion of this outstanding 

material in the industry is the development of cost-effective and robust technology for 

the controllable production of the material with tunable characteristics. Among 

different approaches to SWCNT synthesis, aerosol (floating-catalyst) chemical vapor 

deposition (CVD) [2] method is considered to be the most promising one, fulfilling 

most of the industrial requirements, namely scalability [3], high purity of the material, 

potential for tuning nanotube properties directly during the synthesis process, and a 

simple way of film fabrication as well as deposition of individual species on any 

desired substrate [4]. 

Despite all the advantages and advances already achieved in the field, the 

production of nanotubes with precisely tuned and even defined properties on an 

industrial scale is still challenging. The main factor inhibiting the progress is usually 

attributed to the complexity of mechanisms for the nanotube nucleation, growth, and 

termination burdened by the lack of the general model, providing a quantitative 

relationship between the synthesis conditions and SWCNT parameters. Though the 

main aspects of the SWCNT growth are deduced, the multiparametric nature of the 

chemical processes associated with the inconsistency of the results among reactors 

worldwide inhibits the progress towards the precise control over nanotube properties 

and actualizes the development of novel approaches to govern synthesis process [5]. 

In this work, we combine the problem with another vastly developing field which 

shows its best with multiparametric complex tasks – Machine Learning (ML). We 

report the utilization of ML numerical models for processing of experimental data, 

obtained using a single aerosol CVD reactor, based on thermal decomposition of 

ferrocene and the Boudouard reaction on the surface of iron catalyst. We 

demonstrate the prediction of the reactor output (yield, diameter, and quality of 

producing carbon nanotubes) with an accuracy of as low as 4 %, using temperature 

and gas mixture compound as input parameters. We developed a predictive model 

based on an artificial neural network (ANN) and trained it on a pre-processed 
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This allowed us to build an experimental industrial-scale (1500 mm ID) 

installation. The first tests performed confirmed high efficiency of gasification and 

relatively high environmental performance of the process. The limits for carbon 

monoxide, soot, hydrogen chloride, and hydrogen fluoride were satisfied without any 

gas cleansing, those for dust and heavy metals, sulfur oxides and dioxins exceeded 

insubstantially, so the smoke gas required only a minor cleansing.  

However, the tests revealed substantial limitations related to mechanical 

instability of the process. While perfectly performing with piecewise or briquetted fuel, 

the process with actual MSW gradually developed instability of the combustion front 

that ultimately resulted in a burn-through at one side. This prompted development of 

a new type of gasifier reactor, tilted rotary reactor. Inclined at 45 degrees rotating 

reactor allowed us to combine fuel stirring and mixing as in conventional rotary kiln 

and a packed bed with efficient heat exchange with filtrating gas typical of a shaft 

kiln. Rotation at 2-3 rpm secured perfect stabilization of the FC front. 

An industrial 1500 mm ID prototype reactor has been built and ignited in October 

2019. The fuel gasified was tailings of MSW from the city of Moscow after aerobic 

composting; humidity of fuel was ~35 %, ash content ~35 % TS. The tests confirmed 

stability of the process. The generator gas had the following composition per dry gas 

(see Table, % vol.). Additionally, the gas contained steam and vapors (pyrolysis tars). 

CO2 Ar O2 N2 CO C2H4 CH4 H2 
17.0 0.7 0.0 62.5 8.8 0.7 1.8 8.5 

The gas perfectly burned in a swirl burner. Most important is that tests confirmed 

high environmental performance of the incineration process. Content of PCDD/PCDF 

in the smoke gas was 18.4 pg/m3 TEQ (limiting value 100 pg/m3); PCDD/PCDF 

concentration in the ash was TEQ 28.6 mg/kg (Russian national permissible limit for 

urban soil being 50 mg/kg). 
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Temperature Swing Adsorption (TSA) processes are a promising alternative to 
the more established amine-wash technologies for post-combustion CO2 capture. 
Differently from absorption-based separations, a TSA cycle is not operated as a 
steady state process, but rather as a sequence of steps undergone by the gas-solid 
contactors, which most standardly consist of fixed-bed reactors. A simple cycle is 
constituted by an adsorption step performed at low temperature to maximize CO2 
intake, a heating ramp up to 150 °C with the consequent release of the adsorbate 
during the desorption step, where a high-purity CO2 stream is produced, and a final 
cooling to bring back the system to its initial state Some of the steps of the cycle are 
performed in static conditions (i.e., no inflow into the reactor), whereas others are 
typically performed at low velocities to contain the pressure decay. 

When using commercial CO2 sorbents, one way to increase the process cyclic 
capacity for CO2 is accelerating the heat transfer kinetics. This requires overcoming 
the intrinsic heat transfer limitations associated with the operation of a packed bed, 
both in flow and in static conditions. Following an approach already suggested in the 
context of catalytic processes [2], heat transfer can be enhanced by the introduction 
of highly conductive open-cell foams within the reactor thus maximizing the heat 
transfer in static conditions through the adsorbent bed. In the proposed configuration 
the void cells are filled with the sorbent pellets, enabling to house solid inventories 
larger than those obtained with washcoated structured supports (per unit reactor 
volume). With this contribution, we propose the application of the packed metallic 
foams as an alternative to the standard fixed-bed configuration for adsorption-based 
separations in the case of a post-combustion CO2 capture process. 

In order to observe temperature gradients in both the axial and the radial direction 
within the reactor, a large cross-section (80 mm diameter and 200 mm length) 
jacketed cylindrical adsorption column has been adopted as experimental setup. It 
has been filled packing spherical zeolite 13X pellets (average diameter 1.8 mm) into 
a foam in aluminium with a void fraction of 0.95 and a cell size of 5 mm. For this 
arrangement a total sorbent volumetric fraction of 0.50 has been measured, which 
represents a 25 % reduction of the solid inventory compared to a standard packed 
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CO2 METHANATION WITH Ni AND Co CATALYSTS SUPPORTED ON 
-Al2O3 MODIFIED WITH La 
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CO2 valorization towards methane production through catalytic hydrogenation, 

known as the Sabatier reaction, can be carried out using various group VIIIB metal 

catalysts, supported on different solids having high surface areas, such as Ni-based 

catalysts supported on mesoporous Al2O3 [1][2]. 

The general objective of the present work is to develop suitable Ni and/or Co 

methanation catalysts for processes that combine capture and conversion of CO2 

derived from industrial effluents. The ultimate goal is to develop suitable structured 

catalytic reactors for the process. The study presented here focuses on evaluating 

the performance at atmospheric pressure of Ni and Co catalysts supported on  

-Al2O3, and the influence of modifying these catalysts with La and/or polyvinyl 

alcohol (PVA). The catalysts were characterized using different techniques, including 

N2 physisorption, CO chemisorption, X-ray diffraction (XRD), Temperature 

Programmed Reduction under H2 flow (H2- TPR) and Transmission Electron 

Microscopy combined with X-ray Energy Dispersive Spectroscopy. The catalytic 

performance was evaluated in a laboratory-scale tubular fixed-bed setup using a 

9 mm i.d. quartz reactor. The catalytic tests were typically run during 180 min. at a 

total pressure of 1.3 atm. Prior to the tests, the catalysts were subjected to in situ 

activation by reducing the catalyst at 500 °C under H2 flow for 180 min. The gas 

feeding stream was composed of N2, CO2 and H2 with a H2/CO2 molar ratio of 4:1.  

In Figure 1, preliminary results showed that Ni and Co catalysts are quite stable 

as concerns CO2 conversions over reaction time at a constant temperature of 400 °C. 

There is also a notable difference in the catalytic activity of the two systems 

evaluated using the same activation condition. In this case, Ni catalysts were 

significantly more active and selective towards methane than the Co ones. 
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Figure 1. Hydrogenation of CO2 at 400 °C and 12 LN (CO2/gcat*h): a) Ni catalysts; b) Co catalysts  

Օ XCO2 M    Օ XCO2 M-PVA     ‒ SCH4 M    ‒ SCH4 M-PVA     (M = Ni, Co) 

Taking into account the H2-TPR results and that the reduction conditions seem to 

have a direct impact on the observed catalytic performances, optimization of the 

activation conditions is underway by increasing the reduction temperature and time. 

The presence of PVA in the precalcined catalysts is investigated since this additive is 

used to prepare the slurries employed to prepare the structured monolithic catalysts. 

PVA does not have a significant effect on the selectivity but it has an influence on the 

CO2 conversion, especially for the Co catalyst. Determination of the metallic 

dispersions are underway in order to suitably interpret these results. 

Kinetic studies are also under progress. An apparent activation energy close to 

97 kJ/mol has been preliminary obtained for the Ni catalyst, which is in line with 

values previously reported in the literature [3]. 
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The reduction and utilization of CO2 emitted from the industrial process is 

currently a hot topic from the viewpoint of environmental conservation. The CO2 

methanation (CO2+4H2→CH4+2H2O, ∆H0
298 = -165 kJ/mol) has received attention as 

one of the effective methods for the conversion of CO2 into useful resources, which 

can be used to store surplus electricity as a power-to-gas (PtG) technology1). In our 

previous study2), we found a novel route for CO2 methanation with oxidation over a 

granular Ni/CeO2 catalyst, which could be operated even in regions at room 

temperature. In brief, using a raw material gas containing 1-7 vol % oxygen, the 

methanation performance was greatly improved and realized even in a region at 

room temperature and atmospheric pressure. No one in the World has reported such 

transformation route yet. We named this novel route as auto-methanation. When 

using auto-methanation for reducing CO2 emitted during an industrial process, the 

efficient treatment of large amounts of emitted gas and an efficient heat control are 

serious problems. A structured reaction system with a catalyst component directly 

loaded onto a metal substrate was shown to be suitable to address these issues3, 4).  

In this study, using a structured Ni/CeO2 catalyst, the auto-methanation was 

investigated by feeding a raw material gas containing 1-11 vol % oxygen. The 

obtained data suggested that the constructed catalyst system is extremely effective 

in reducing CO2 and contributes to the PI technology for CO2 methanation. 

The structured catalyst was prepared by wash-

coating a granular Ni/CeO2 on an aluminum substrate. 

The substrate activated by NaOH and HCl solutions 

was dipped into a slurry of Ni/CeO2 catalyst. Figure 1 

shows the prepared spiral-type catalyst, 

demonstrating the uniform coating of the catalyst 

(75 mg) on the substrate. Prior to the methanation, the 

spiral catalyst (four pieces, catalyst: 300 mg) was 

placed in a conventional flow reactor (ID: 8 mm), reduced by H2 at 500 °C. 

Methanation was carried out by introducing the feed gas into the reactor at 350 °C to 

Fig. 1. Spiral Ni/CeO2 catalyst 
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In recent years Dimethyl Ether (DME) has attracted considerable attention as an 

alternative fuel due to its favorable combustion characteristics, easy transportation, 

handling and relatively low CO and NOx emissions. DME is traditionally produced by 

the so-called indirect (two-step) method. In the first step, methanol is produced from 

synthesis gas (syngas) typically on Cu-ZnO-Al2O3 catalyst. Methanol is then 

dehydrated to DME in the second step via acidic catalysts such as -Al2O3 or  

HZSM-5. As opposed to the indirect one, the direct (one-step) method involves co-

existence of the synthesis and dehydration catalysts either as a physical mixture or in 

the form of hybrid catalysts [1] and aims to perform methanol synthesis and 

dehydration within the same reactor to reduce capital and operating expenditures. 

Exothermic nature of the reactions in the direct synthesis method imposes a strong 

need for effective heat removal from the catalyst bed. Wall-coated microchannel 

reactors offer heat transfer rates that are up to ~102 times higher than those of 

packed bed counterparts due to higher surface area/volume ratios enabled by the 

channel dimensions in the sub-millimeter range. Moreover, microchannel units with 

integrated cooling systems allow near isothermal conditions which allow optimization 

of the thermodynamic and kinetic effects to maximize reactor performance [2]. 

One-step conversion of CO2-containing syngas to DME leads to reverse water-

gas shift (RWGS) which generates water vapor as a by-product. Water vapor is 

undesired as it hampers DME production by shifting dehydration towards methanol 

formation and increases the risk of hydrothermal sintering of the catalysts [2]. 

Moreover, positive CO2 consumption may not be realized as methanol produced by 

CO hydrogenation thermodynamically drives CO2 hydrogenation in the reverse 

direction. These limitations can be overcome by in-situ removal of water vapor via 

selective membranes [1]. Owing to the high surface area/volume ratios (in the order 

of ~104 m2/m3) of the microchannel reactors, combining them with membranes can 

offers mass transfer rates that are significantly enhanced compared to those of 

packed-bed counterparts.  
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DEVELOPMENT OF A TWO STAGE REACTOR CONCEPT  
FOR THE METHANATION OF CARBON DIOXIDE FROM 

RENEWABLE SOURCES 

Martin Wichert1, Stefan Neuberg1, Jochen Schürer1, Steffen Keller1,  
Heike Valenteijn1, Gunther Kolb1,2 

1Fraunhofer IMM, Carl-Zeiss-Str.18-20, Mainz, Germany 
2Eindhoven University of Technology,  

Den Dolech 2, 5600 MB Eindhoven, The Netherlands 

The methanation of carbon dioxide from biogas plants is a viable route to 

increase the economic attractiveness of the injection of biogas methane into the 

natural gas grid, which has a significant energy storage capacity. However, the 

hydrogen required for the reaction must originate from renewable sources such as 

water electrolysis applying excess electric power from wind energy or solar power 

plants (which is currently under certain conditions at negative cash flow when fed into 

the electric grid) to maintain overall sustainability and economic viability. The 

unsteady availability of the renewable electric power excess requires the dynamic 

operation of the electrolysis and the methanation reaction downstream. 

Owing to the exothermic nature of methanation, reactors with integrated 

capabilities for heat removal are required to be able to follow the requirements of the 

dynamic operation and of the thermodynamic equilibrium of the reaction. To reduce 

the size of such a heat exchanger reactor a first reactor stage operated at high 

reaction temperature under adiabatic conditions is favourable, while a decreasing 

temperature profile along the length axis of the second reactor increases the 

conversion further towards the outlet.  

Specific catalyst formulations were developed for the different operating 

temperatures of the reactors. The activity and sulphur tolerance of the catalysts were 

optimized.  

The two stage reactor concept described above was verified experimentally in a 

small scale pilot plant. Adiabatic (monolithic) reactors and plate heat-exchanger 

microreactors coated with innovative catalyst formulations were built for the 

methanation reaction with a power equivalent of the corresponding water electrolyser 

of up to 50 kW. Full scale reactors were finally installed at a biogas plant along with a 

50 kW electrolyser. 
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INTENSIFICATION OF CO2 METHANATION BY CATALIST AND 
PROCESS DESIGN 

Alessandro Porta, Carlo Giorgio Visconti*, Luca Lietti 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico 
di Milano, via La Masa 34, 20156, Milano, Italy, * carlo.visconti@polimi.it 

The utilization of low-cost CO2 in combination with renewable H2 is 

environmentally attractive and may help to stabilize the power grid. Among the 

proposed CO2 (re)utilization technologies, its hydrogenation to methane to produce 

SNG through the Sabatier reaction is particularly appealing [1], especially where a 

highly integrated natural gas pipeline network is available. The exothermic CO2 

methanation is strongly limited by thermodynamics at high temperatures: the 

maximum reactants conversion is low and the CO selectivity quickly increases. 

Accordingly, in this work, we focus on the design of low-temperature Ru-based 

catalysts [2] appropriate for operations at the industrial scale. In particular, by 

experimental and modeling activities, we investigate the effects of: (i) the catalyst 

size; (ii) the active phase distribution; (iii) the catalyst activation conditions; (iv) the 

operating conditions; (v) the process configuration. The prepared samples are tested 

in a fully-automated lab-scale plant equipped with a fixed bed reactor, operating 24/7 

in integral conditions and with concentrated H2/CO2 streams. The experimental set 

up allows operations with one reactor or with two reactors in series, with or without 

intermediate water condensation.  

100 m -Al2O3 powders, activated with 0.5, 1, 2 and 5 wt. % Ru, have been 

tested in kinetically controlled regime. No differences in activity, nor in selectivity, 

were observed when working at constant flowrate per gram of Ru. However, the 

metal dispersion of the active phase measured by CO chemisorption and HR-TEM 

indicated a relevant decrease in the average particle size. The turnover frequency 

(TOF) has been evaluated and compared with literature data. In this particle size 

range, an increase in the particle size is accompanied by an increase in the intrinsic 

activity of the exposed surface. The variation of metal surface area and TOF are 

effectively balanced, resulting in the same activity of the samples when working at 

constant flowrate per gram of Ru. 

Since the 5 wt. % Ru/Al2O3 sample exhibited the highest activity per gram of 

catalyst, while still exploiting at best the amount of introduced Ruthenium, the recipe 
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for its preparation has been scaled up using 800 and 2300 m -Al2O3 microspheres 

to assess the role of pore diffusion under conditions of industrial interest. Both CO2 

conversion and CH4 selectivity decrease when increasing pellet size due to the onset 

of diffusional limitations, indicating that the characteristic length of diffusion in these 

conditions is lower than 133 m.  

The process configuration was then investigated aiming at the production of a 

methane stream that meets the specifications required for its direct injection in the 

grid. In this context, the parameter of CH4 purity (i.e. the dry molar fraction of 

methane at the reactor outlet) has been considered. In order to increase the CO2/H2 

conversion, the possibility of working at low temperatures and space velocities was 

investigated. The adopted Ru-catalysts exhibited a stable behavior for 800 h on 

stream, even in presence of the large amounts of steam generated by the reaction, 

with CO2 and H2 conversion in excess of 95 %. Furthermore, using two catalytic beds 

in series at different temperatures, allowed to boost the methane yield. The best 

configuration is obtained by operating the first reactor at high temperatures to boost 

the process kinetics, while keeping the second reactor at milder conditions so to 

exploit the high CO2 conversion and CH4 selectivity at equilibrium. Condensing the 

water exiting from the first reactor further boosts the methane purity at the reactor 

outlet, allowing to reach a CH4 purity compatible with grid injection (98.5 %), while 

working at atmospheric pressure (Fig.1b). 

a) b)

Figure 1a. TOF at 250 °C as a function of Ru particle size  Figure 1b. Methane purity obtained: when 
operating a single reactor at 250 °C (red line), when operating the first reactor at 250 °C and varying 
the second reactor temperature in the range 125-230 °C in absence (green points-line) and in 
presence of intermediate water condensation (blue points-line). H2/CO2 = 3.9, 1 L(STP)/h/gcat 
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KINETIC MODELLING AND NMPC SIMULATION FOR THE 
EPOXIDATION REACTION OF THE SOYBEAN OIL 

Gustavo V. Olivieri, Henrique L. N. da Silva, Jacyr V. de Quadros Jr.,  
Reinaldo Giudici 

Chemical Engineering Department, Escola Politécnica da Universidade de São 
Paulo, São Paulo, SP, Brazil, gustavo.vo@usp.br 

One of the current trends in industrial processes is to consolidate the use of 

substances from renewable sources, replacing traditional nonrenewable substances. 

Inside this scope, the epoxidized soybean oil (ESO) has been a candidate to replace 

phthalate-based compounds as an element in plasticizers for polyvinyl chloride 

(PVC), due to the elevated toxicity of the phthalates [1]. The epoxidation reaction of 

the soybean oil usually occurs in a biphasic liquid system, with the addition of 

soybean oil, hydrogen peroxide and a carboxylic acid. Apart from the ESO, this 

reaction system also tends to produce undesired products due to ring opening 

reactions of the ESO. This can be minimized by adding selective catalysts and/or 

providing proper reaction conditions to the system. Aiming to increase the production 

of the ESO in this reaction system, the addition of catalysts might not be 

economically and environmentally advantageous. Within this, as a continuation of 

another project in our Department [2], the first objective of this study was to develop 

a kinetic model to represent this system in batch configuration, using values collected 

from studies in the literature. The second part of this project was the determination of 

an optimal temperature profile by dynamic optimization for the epoxidation reaction of 

the soybean oil, which tends to maximize the production of the ESO, based on the 

developed model. Lastly, this profile was used to simulate a nonlinear model 

predictive controller (NMPC) for the temperature of the system, manipulating the flow 

rate of water as a cooling fluid. Figure 1 presents the results for a simulation tested 

for a system reaction containing initially soybean oil, a hydrogen peroxide solution 

(60 % w/w) and a formic acid solution (85 % w/w), leading to an ESO with oxirane 

index above 6.6 % and iodine index below 5.5 g I2/100 g oil, considering a batch time 

of 2 h. The optimal temperature profile (Figure 1a) shows an interesting behavior, in 

which high values of temperature should be implemented at the beginning of the 

reaction, in order to intensify the reaction rates. Then, the temperature should 

decrease linearly until the boundary stablished as 353.15 K, in order to avoid the 

mailto:gustavo.vo@usp.br
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degradation reaction of the hydrogen peroxide. The profile for the flow rate of the 

cooling fluid (Figure 1b) agrees with the proposed logic for the temperature profile: at 

first, this value should be high, in order to absorb the high energy generation rate 

associated to the exothermicity of this reaction [3]; then, the flow rate should 

gradually decrease as the reactions become slower. The authors believe these 

preliminary results may serve as alternatives to be implemented in industries in order 

to increase the productivity of the ESO. Additionally, the presented methodology may 

also be used to test different conditions for this reaction system. 

 
Figure 1. (a) Temperature profiles and (b) Flow rate profile of the cooling fluid for a NMPC simulation 

for the reaction system to produce ESO 
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The use of agitation in anaerobic biodigesters is known to affect biogas 

generation, but there is no consensus on the best type and the most appropriate 

intensity [1]. It has been observed that agitation systems in anaerobic digestion 

process have different configurations and operational variables, which make it 

difficult to identify, when and how agitation brings benefits. In addition, many studies 

do not provide necessary information to reproduce or scale up agitation  since they 

use qualitative terms such as “manually”, “vigorously” and “minimally” to describe it. 

[2-6]. In this way, the goal of this work was to contribute with the study of agitation in 

anaerobic biodigesters. 

Two biodigesters (8 L, nominal capacity), one with agitation system (B1) and the 

other without agitation(B2), were operated at 35 °C, using rice husk and swine effluent 

as substrates. Agitation was performed intermittently (every 6 hours) under laminar 

regime (Re < 2000), using effluent recirculation, provided by an external pump. In 

order to obtain the laminar regime, it was necessary to adjust the jet velocity and 

consider the biodigester dimensions. [7,8]. The duration of the agitation was 

considered to be the necessary time for mixing and homogenization. It was calculated 

as proposed by Fox and Gex [8] and it was called mixing time (MT). To obtain Re and 

MT, the specific mass and the substrate viscosity were also determined. The first step 

of this test consisted of the batch feeding of the biodigesters. It was performed for 21 

days, that was the necessary time to stabilize biogas generation (BG). Then the 

biodigesters began to be fed semi continuously. The process performance was 

monitored by the quantification of the biogas generated throughout the process (using 

a gasometer), the amount of methane present in the biogas by chromatography [9] and 

physicochemical parameters. Considering the initial properties of the fluid, specific 

mass (1080.6 kg m–3) and viscosity (0.0018 N s / m–2); the dimensions of the 

biodigester and laminar mixing, the jet velocity should be set at 0.18 m/s and MT was 

set for 2 minutes duration (120 s). 
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Table 1 summarizes biogas production (L) at the batch step (21 days) and at the 

end of the complete process (55 days). From the results presented, it can be seen 

that intermittent agitation increased the amount of biogas produced. Biodigester B1 

produced 17 % higher biogas compared to B2. The results are consistent with those 

obtained by Tian et al [10]. In semi continuous process, compared to the batch 

process, higher concentration of substrates and products coexist. This may be the 

reason why agitation becomes more significant in the process with semi continuous 

feeding, due to the greater need for mixing and homogenization of the medium. 

Methane concentration was similar for the two digesters investigated. From this 

study, it can be concluded that agitation was important to increase biogas production 

and also that it is possible to set criteria for its application, so that it can become 

reproducible in other studies, providing more reliable results about its benefits. 
Table 1. Biogas production and methane concentration in the biogas sample 

Parameter Biodigester 
B1 B2 

Biogas on batch step 14,08 15,52 
Biogas on complete process  86,30 71,48 

CH4 on biogas (% v/v) 33,6  2,4 34,9  5,0 
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EFFECT OF CATALYST AND REACTION CONDITIONS ON 
POLYMETHYL METHACRYLATE (PMMA) DEPOLYMERIZATION  

IN FLUIDIZED BED REACTOR 

Olga Chub1*, Nooshin Saadatkhah1, Jean-Luc Dubois2, Gregory S. Patience1 

1Chemical Engineering Department, Polytechnique de Montréal,  
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Polymethyl methacrylate (PMMA) is a lightweight, transparent, thermoplastic 

polymer for which the world market exceeds 12.5 billion USD. Monomer recovery is 

the primary objective to depolymerize PMMA although processing it into 

hydrocarbons and syngas is also of interest albeit the economic incentive for the 

second option is several fold lower [1]. Depolymerizing PMMA in molten bath or 

heated screw feeder achieves above 80 % MMA yield; Kaminsky et al. claim that up 

to 97 % are possible in a fluidized bed (FB), although lower yields have been 

reported by Mitsubishi. FB decreases side products and carbon black due to 

excellent heat and mass transfer and low residence time of monomer in the reactor 

[1,2]. The monomer yield in a non-catalytic pyrolysis is highest at 550 °C, but 

increasing it to 590 °C produces light gases – methane, ethene, propene, carbon 

monoxide and dioxide [1]. In a FB, it begins to polymerize below 300 °C [2] and the 

high heat transfer coefficient in the bed promotes “thermal ablation” of polymer 

particles that degrades it, and reduces sticking and defluidization [3].  

Catalytic FB pyrolysis decreases required operating temperatures while 

increasing product yield: Free radicals initiate the depolymerization of the PMMA in 

an inert atmosphere [4]. Heterogeneous catalysts (Bronsted acids) also initiate the 

PMMA depolymerization. Amorphous catalytic sites initiate cracking reactions [5] 

(high Si/Al ratio dictate the scission activity of the catalyst and its higher thermal 

stability [6]), while propagation and termination stages take place on the crystalline 

sites. In this regard, the surface area, acidic properties and the ratio of 

amorphous/crystalline part of catalysts are the most important parameters.  

The reaction conditions – proportion between mass of catalyst and mass and 

particle size of PMMA, feeding gas flowrates, fluidization characteristics of the 

powder as well as the catalyst composition – will dictate yield and product quality. 
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Here we investigated depolymerization of PMMA in an 8 mm diameter fluidized 

bed reactor over Al2O3-SiO2 aerogel and industrial FCC catalyst. We report screening 

tests conducted at 250, 300 and 350 °C in N2 with PMMA powder (0.2 g) injected in 

the reaction zone by a pulse method. The reactor operated in the bubbling 

fluidization regime at variation gas flow rates of 180 mL·s–1
 - 250 mL·s–1, water vapor 

fed in the reaction zone at 70 °C to transform ester into target products. GC-MS, GC 

and HPLC instrument analyzed reaction products. BET, XRD, LECO, SEM-EDS 

instruments characterized catalysts to express their activity.  
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STRUCTURED CATALYSTS AND REFORMERS FOR GASEOUS  
AND LIQUID HYDROCARBON FUELS PROCESSING TO 

HYDROGEN-RICH GAS 

Snytnikov P.V.1,2,3,*, Rogozhnikov V.N.1,2, Potemkin D.I.1,2,  
Fedorova Z.A.1,2, Belyaev V.D.1,2, Pechenkin A.A.1,2,  

Badmaev S.D.1,2, Zazhigalov S.V.1, Zagoruiko A.N.1,2, Sobyanin V.A.1,2 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, * pvsnyt@catalysis.ru 
2Novosibirsk State University, Novosibirsk, Russia 

3«UNICAT» LLC, Novosibirsk, Russia 

Over the past decades, the number of research projects aimed to the search and 

study of oxidative conversion catalysts (steam, autothermal conversion or partial 

oxidation) for gaseous fuel (natural gas, propane-butane mixtures, dimethyl ether) 

along with liquid fuel (kerosene, diesel, renewable natural raw materials – biodiesel 

and glycerin – a by-product of biomass processing), as well as engineering design of 

fuel processors for syngas or hydrogen-rich production has increased significantly. 

Considerable attention was paid to the development of structured catalysts.  

To avoid hot spot formation during the autothermal conversion of hydrocarbons, 

alcohols and ethers, which arises due to the high exothermic effect of the oxidation 

reactions, mainly occurring in the frontal layer of the catalytic module, and the high 

endothermicity of the steam and carbon dioxide conversion reactions that occur in its 

outlet part, it was proposed to use metal foams and meshes with a higher thermal 

conductivity instead of cordierite ceramics [1,2]. The main problem that arises when 

using metal substrates is the difference in the thermal expansion coefficients of the 

metal and the deposited oxide layer. The use of standard suspension techniques 

leads to nonuniform deposition, poor adhesion and low mechanical strength of the 

catalytically active coating. In the conditions of thermal cycling, where the 

temperature difference can reach 1000 °C or more, its degradation, delamination and 

destruction occurs.  

This problem was elegantly solved by developing a technique for growing 

aluminum hydroxide crystals on a metal surface, which, during calcination at a 

temperature above 600 °C, first goes into -Al2O3, and then into -Al2O3 phase at a 

temperature above 900 °C [2]. This composite material was used as a primary 

support for preparation of catalysts for the all stages of hydrogen production: fuel 

conversion to syngas, CO water gas shift reaction and CO clean-up processes (CO 

preferential oxidation and CO selective methanation). 
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DIMETHOXYMETHANE FUEL PROCESSING FOR SOFC-APU: 
INSIGHTS FOR CATALYST AND REACTOR DESIGN 

Badmaev S.D.1,2,*, Potemkin D.I.1,2, Kulikov A.V.1, Snytnikov P.V.1,2,  
Sobyanin V.A.1 

1Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva, 5, Novosibirsk, 630090, 
Russia, * sukhe@catalysis.ru 

2Novosibirsk State University, Pirogova St., 2, Novosibirsk, 630090, Russia 

In past decades, dimethoxymethane (DMM) has attracted a growing interest as 

an ecologically benign raw material with a wide scope of applications. DMM, as well 

as methanol and dimethyl ether is an easy to synthesize (from natural gas) 

oxygenated compound of C1 chemistry. It is worth noting that DMM synthesis on the 

basis of renewable feedstocks based on CO2 produced from biogas and hydrogen 

supplied by water electrolysis are under development now. Since DMM is a non-

corrosive, non toxic liquid compound, it can be easily stored and transported. 

Recently, we demonstrated the feasibility of H2/syngas production by DMM 

catalytic steam reforming [1] and partial oxidation [2] showing high promises for fuel 

cells. It is well known that steam reforming needs too much external heating to 

perform the highly endothermic process and evaporation of water, compared to 

catalytic partial oxidation. Syngas production by partial oxidation reactions is ideal for 

solid oxide fuel cells (SOFCs) due to their high tolerance to impurities in hydrogen. 

Besides the partial oxidation reactions usually shows several advantages over steam 

reforming such as short response time, compactness and easy start-up of SOFC-

based power units. In addition the operation of such units (SOFC-APU) is made 

possible even at low temperatures by “water independence”. 

The report focuses on outcomes lab-scale DMM catalytic oxidation experiments 

and our vision to create portable reformer. The experimental results indicate: 

 the feasibility of syngas production by partial oxidation of DMM using 

supported Pt catalysts. In particular, granulated as well as structured  

Pt-catalyst provided complete conversion of DMM with high syngas  

concentration (up to 60 vol. %) at T = 400 °C and DMM:O2:N2 =28.6:14.3:57.1 

(that corresponds to molar ratio DMM:air = 2:5) showing high promises for 

solid oxide fuel cells (SOFC) [3].  

 as the O2/DMM ratio increased from 0.5 to 4, the course of DMM oxidation 

changed from the partial oxidation (O2/DMM = 0.5) to the deep oxidation of 
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DMM (O2/DMM = 4). A successful self-ignition and sustainable operating of 

DMM combustion using supported Pt-catalyst was demonstrated. The heat 

was supplied to support partial oxidation reactor in the form of hot gases 

generated in deep oxidation reactor. 

Thus, the results obtained allow as to propose the portable syngas reformer 

design included catalytic DMM burner (see Figure 1). 

Figure 1. Schematic SOFC-based power unit on DMM reforming 
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DEVELOPMENT OF HYBRID REACTION MODULE LINKED WITH 
LIQUID PLASMA AND ELECTROLYSIS FOR HYDROGEN 

PRODUCTION FROM WATER DECOMPOSITION 

Sang-Chul Jung 

Department Environmental Engineering, Sunchon National University,  
Republic of Korea, jsc@sunchon.ac.kr  

Plasma in the liquid phase (PLP) is produced by discharging with a high voltage 

into the liquid directly. PLP has a high density by discharging, and releases strong 

UV light and more visible light accompanied with many active species. The discharge 

of pulse plasma at high voltage is an efficient technology for wastewater treatment 

[1,2]. PLP by high-voltage discharging for the removal of organic materials in 

wastewater has many advantages, such as no secondary pollution, faster 

degradation to pollutant materials, process at ambient temperature and pressure, 

and lower energy consumption. PLP can produce a higher plasma density and larger 

spatial distributions than ultraviolet lamp radiation [3]. The PLP process can induce 

the effective removal of pollutant materials and H2 production, simultaneously. 

In this study, a complex reaction system was developed in which the liquid 

plasma reaction and the electrolysis reaction were combined to further increase the 

decomposition efficiency and hydrogen generation rate of the hardly decomposable 

wastewater. The reaction system was used to decompose contaminants from the 

wastewater containing 1,4-dioxane and to investigate the hydrogen production rate. 

Figure 1 shows a schematic diagram of a liquid phase plasma and an electrolytic 

hybrid reactor. The reactor may perform a continuous flow reaction and a batch 

circulating flow reaction. The reaction impact and efficiency of the two reaction 

systems were discussed. The decomposition efficiency and hydrogen production rate 

of the hardly decomposable wastewater through the development of the optimal 

photocatalyst system and the electrolyte for the application of the linkage system 

between the liquid plasma reaction and the electrolytic reaction were investigated.  
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FLEXIBLE APPLICATION OF BIOGAS UPGRADING MEMBRANES IN 
POWER-TO-METHANE PROCESSES 

Andreas Gantenbein1,2, Julia Witte1, Oliver Kröcher1,2, Serge M.A. Biollaz1, 
Tilman J. Schildhauer1* 

1Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute (PSI), Switzerland,  
* tilman.schildhauer@psi.ch 

2Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéral de 
Lausanne (EPFL), Switzerland 

Biogas, a mixture of methane and CO2, has to be upgraded before biomethane 

can be injected into the gas grid due to the quality specifications (>96 % CH4, <4 % 

CO2, <2 % H2 in Switzerland and Germany). Upgrading can be achieved by 

separation of the CO2 or its conversion to methane. This direct methanation of CO2 in 

biogas enables the use of renewable CO2 for power-to-gas operation, which allows 

the seasonal storage of electricity in the natural gas grid. The process was 

demonstrated using a 10 kWSNG pilot plant, based in bubbling fluidized bed 

methanation [1]. In order to fully comply with gas grid requirements, separation and 

recycle of residual hydrogen and CO2 is necessary. Witte et al. [2] showed that gas 

separation membranes could provide an economic solution to reach these 

requirements. 

In this work, we show that a commercial polymeric membrane (Evonik Sepuran) 

can be used for both, biogas upgrading by CO2 separation and for H2 recycle in direct 

methanation of biogas.  Experiments have shown that the biomethane produced in 

direct methanation still contains up to 11 % H2 and 1-2 % CO2 due to thermodynamic 

equilibrium. Therefore, the experiments were performed with the focus of decreasing 

the H2 and CO2 down to the required limits of 2 % (H2) and 4 % (CO2), on the one 

hand, and on upgrading a gas mixture representing fermentation-derived biogas 

(40 % CO2 / 60 % CH4), on the other hand. 

The membrane unit was installed in the PtG demonstration unit and placed in a 

water bath, in order to maintain a stable temperature (20-40 °C). The inlet and outlet 

streams of the membrane were monitored regarding their composition (micro-GC) 

and flow rates (flow meters). The pressure of the system was controlled on the 

retentate side (product gas) of the module. The permeate (recycle) was kept at 

atmospheric pressure. The experimental data showed that it is possible to remove 

excess hydrogen from the SNG to fulfil the grid injection requirements. For this 
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LINKING HEAT AND ELECTRICITY SUPPLY FOR DOMESTIC 
USERS: AN EXAMPLE OF POWER-TO-GAS INTEGRATION  

IN A BUILDING 

E. Moioli 

Energy and Environment section, Paul Scherrer Institute, Forschungsstrasse 111, 
5232 Villigen, Switzerland, emoioli08@gmail.com 

A new system, coupling electricity and gas grid in a building, was designed. It 

consists in the retrofit of the existing photovoltaic system, consuming the electricity 

overproduction in the local synthesis of methane instead of injecting it in the 

electricity grid. Methane can be stored in the gas grid and used in winter in the 

existing gas burners, providing the required heat for house warming. Additionally the 

methanation system provides waste heat that is used to warm-up the sanitary water, 

eliminating the need for an electric boiler. The system was optimized according to the 

weather conditions and the dimensions of the main pieces of equipment were 

determined. With this system, the energetic independence of the house is 

maximized, thanks to the synchronous production of electricity, gas and heat, which 

is stored for use when needed. Therefore, the profitability of the photovoltaic system 

is ensured independently from the electricity feed-in tariffs.  

The clean energy transition in residential buildings cannot leave out the supply of 

sustainable heat all over the year. However, while several incentives are currently 

available for the installation of renewable energy harvesting devices in buildings (e.g. 

solar panels on rooftops), the initiatives addressing the self-production of heat are 

rare and mainly exploited through the installation of solar collectors in regions with 

large solar irradiation. The solar energy availability, the electricity and heat demand 

are often subject to temporal phase shift, with the former being abundant in summer 

and during the day and the latter being required in winter and during the night. The 

combined action of all these phenomena causes an important mismatch between 

energy production and consumption, which, in perspective, may lead to problems in 

the technical and economic operation of the electricity grid. This may lead to two 

concurrent phenomena: the excess electricity in summer may cause a drop in the 

energy price and the deficit of energy in winter may generate an increase in the 

energy price. Additionally, the possible introduction of important carbon taxes may 

cause the important increase in the cost of standard gas-based heating systems. 

mailto:emoioli08@gmail.com
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For all these reasons, it is essential to design new energy systems that prepare 

residential building to cope both with the risk of not being able anymore to place the 

electricity on the market in summer and with the danger of having a substantial rise 

of the gas bill in winter. Hence, in this context, the concept of power-to-gas (PtG) 

becomes interesting for the energy supply of buildings. In fact, one may imagine 

using the excess electricity available in the summer (which has a low value for the 

above-mentioned reasons) for the local production of synthetic natural gas (SNG), 

via water electrolysis and CO2 methanation. SNG can be stored in the natural gas 

grid as a carbon-neutral substitute of the standard fossil methane and bought back in 

winter for consumption in the standard gas-fired heating systems. In this way, the 

return on investment in the solar panels installation is guaranteed over time and the 

de-fossilization of the heating system can be achieved. 

In this work, it is shown how such a small-scale PtG system can be optimally 

designed. The energy and heat supply is designed in all its part, from the available 

solar panels to the integration with the existing heating system and sanitary water 

structure. The system is based on a coupled electrolyzer/CO2 methanation block with 

an electrical power input below 50 kW, whose operation was tested in previous 

works. The dimensions of the main apparatus are determined based on the 

measured conditions at the target location (solar irradiation and temperature). This 

work reports the possibility of connecting heat and energy supply at small-scale, by 

waste heat recovery of PtG in the heating of sanitary water. Furthermore, this work 

shows how the cross-disciplinary methodology can be applied in different economic 

and geographic boundary conditions. 
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THERMAL AND CATALYTIC PYROLYSIS OF POLYOLEFINS WITH 
VACUUM GAS OIL 

Godinho T.1, Rijo B.1, Lemos M.A.N.D.A.1, Carabineiro H.2,  
Tarelho L.A.C.3 and Lemos F.1 

1CERENA, Instituto Superior Técnico, 1049-001 Lisboa, Portugal,  
francisco.lemos@tecnico.ulisboa.pt 

2Galp, Refinaria de Sines, Apartado 15, 7520-952 Sines, Portugal 
3Department of Environment and Planning & CESAM, Universidade de Aveiro,  

3810-193 Aveiro, Portugal 

The world production of plastics has been increasing at a high rate, mainly due to 

the rapid urbanization, the development of China plastic market and the increase in 

world population [1]. Due to this increase, plastics have significantly contributed to 

development of countless countries [1]. However, most plastics use petroleum and 

natural gas as their raw materials [2]. Given this relationship, and other problems 

caused by the increase in plastic production, such as the increase in the 

accumulation of plastic waste and the worsening of global warming, it’s necessary 

not only to partially replace fossil fuels but also to efficiently manage plastic waste [1]. 

This work is focused on tertiary recycling of plastic waste, more specifically on the 

pyrolysis process of two of the most common types of plastic waste, polypropylene 

(PP) and low density polyethylene (LDPE) [1], in co-processing with vacuum gas oil 

(VGO). The objective is to evaluate the feasibility of co-processing plastic waste and 

a typical feed of a Fluid Catalytic Cracking (FCC) unit [3]. Preliminary experiments 

were carried-out in a TG-DSC at different heating rates (10 to 200 °C/min), with 

different types of plastic, with fresh and waste plastic, different types of catalyst 

(FCC, HZSM-5 and H-beta) and different VGO-plastic mass ratios. 

Plastics have higher initial, maximum and final thermal degradation temperatures 

than VGO. Additionally, the thermal degradation processes of waste plastic begin 

and end later than the processes of pure plastic. It was also observed that the 

thermal degradation temperatures are higher in LDPE compared to PP and that the 

degradation process is influenced by the catalysts, particle shape/size, the origin of 

the plastic and the heating rate. When analyzing the VGO-plastic thermal and 

catalytic co-processing, it is observed that the degradation temperatures increase 

with the increase of plastic incorporation and that the final degradation temperature 

of the co-processing is higher than the one for single type plastics, meaning that 
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MECHANISM OF C-FORMATION IN METHANE DRY REFORMING ON 
RH REVEALED BY SPATIALLY-RESOLVED OPERANDO-RAMAN 

AND MICROKINETIC ANALYSES 

Gianluca Moroni, Luca Nardi, Alessandro Donazzi, Matteo Maestri 

Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia,  
Politecnico di Milano, via La Masa 34, 20156, Milano,  

matteo.maestri@polimi.it 

In this study, the mechanism of carbon formation and its kinetic consequences in 

Methane Dry Reforming (MDR) over 4 % Rh/-Al2O3 catalyst was investigated by 

means of an operando-Raman Annular reactor [1]. The spatially-resolved 

spectroscopic data and the kinetic analysis were interpreted with a detailed 

microkinetic scheme, thus making it possible to correlate experimental results to 

mechanistic insights [2,3]. This work takes place in the search for novel energy 

application for hydrogen and syngas production starting from CO2-rich natural gas 

and biogas, for which MDR represents a promising route. However, poisoning of the 

metallic catalyst by carbon and sulfur is one of the major obstacles to the industrial 

upscaling of such application and it calls for the quantitative understanding of the 

catalytic consequences of C and S deposition for the catalytic activity. Our 

experimental campaign investigated the effect of the dilution of reactants on MDR at 

fixed space velocity and CO2/CH4 ratio (equals to 2), under different temperature 

conditions. A strong dependence of the catalyst performances on the concentration 

of reactants was evidenced and attributed to the combined effect of thermodynamic 

driving force and concentration of the most abundant reactive intermediates (MARI) 

of the process (H2 and CO). The experiments were carried out in sequence, which 

allowed us to observe a progressive loss of activity. During the tests at constant 

temperature an increase of carbon signals in Raman spectra was observed with time 

on stream while only an initial decrease of CH4 conversion occurred (Figure 1). 

Spatially-resolved Raman analysis revealed C-deposits were not uniformly 

present at the catalyst, but they were stratified along the axis of the reactor, 

preferentially accumulated at the end of the catalytic bed. These findings were used 

in the formulation of a mechanism that describes how carbon aggregates form and 

grow at the catalyst surface causing its deactivation. Analyzing the system from a 

microkinetic point of view, we identified in the product CO and the reaction 

intermediate C the responsible for the formation of carbon deposits. As the reaction 
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AN INNOVATIVE KINETIC MODEL OF THE HYDROCRAKING  
OF A HDPE/VGO BLEND  

Vela F.J., Trueba D., Lezcano G., Palos R., Arandes J.M., Gutiérrez A. 

Dpt. of Chemical Engineering, University of the Basque Country UPV/EHU,  
P.O. BOX 644, Bilbao, Spain; Tlf. +34 946 015 361,  

e-mail: franciscojavier.vela@ehu.eus 

Introduction 

The world plastic production has reached 359 million tons in 2018, with an 
increase of 11 million tons in comparison with the previous year [1]. Consequently, 
the amount of discarded waste plastic has also increased and, given the current 
mismanagement in the treatment of this waste, existing environmental issues are 
getting worst. This way, finding alternative routes to valorize plastics has become a 
crucial matter. The possibility of using refinery units to treat raw plastic blended with 
conventional streams has appeared as a promising alternative to conventional 
processes [2, 3]. Indeed, in a previous work we have assessed that hydrocracking 
unit can manage a blend of high-density polyethylene (HDPE) with vacuum gasoil, 
(VGO) leading to the formation of gasoline and diesel-like hydrocarbons [3]. In this 
work, we have gone a step further proposing a reaction scheme that describes this 
process and obtaining a kinetic model that reproduces quite accurately the 
experimental behavior of the blend. 

Experimental 

The feed has consisted of a blend of: (i) VGO with a boiling range of 314-519 °C 
and (ii) powdered virgin HDPE with an average molecular weight of 46,200 g mol–1. 
Reactions have been carried out in a 100 cm3 stirred tank reactor at 400-440 °C, at a 
pressure of 80 bar, for 15-120 min long under a continuous flow of H2 (200 ml·min-1). 
Moreover, the following mass ratios have been used: VGO/HDPE, 4 and 
Catalyst/Feed, 0.05-0.1. The catalyst has been an in-house prepared Pt-Pd catalyst 
supported on Y zeolite, which has been characterized by several techniques [3]. At 
the end of runs, both gaseous and liquid products have been analyzed by 
chromatographic means. 

Results and discussion 

Figure 1 shows the kinetic scheme proposed for the hydrocracking of the 
HDPE/VGO blend, in which it can be seen how the polyolefin and the different 
fractions of the VGO are interlinked. It should be mentioned that given the lack of 
existence of these types of mechanisms in the literature, an extensive review has 
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DEVELOPMENT OF THE MATHEMATICAL MODEL OF DIESEL FUEL 
HYDRODEWAXING PROCESS TAKING INTO ACCOUNT 

N-PARAFFINS DISTRIBUTION IN THE FEEDSTOCK 

Belinskaya N.S., Ivanchina E.D., Mauzhigunova E.N., Bykova V.V. 

National Research Tomsk Polytechnic University, Tomsk, Russia, 
belinskaya@tpu.ru 

A significant problem in the oil refining industry is the inability to continuously 

determine the group composition of the heavy feedstock due to the lack of the 

necessary technical means. Laboratory and experimental methods are used for 

determining the group composition, for example, liquid chromatography, combined 

gas chromatography and mass spectrometry, fluorescence adsorption. However, the 

use of these methods for continuous determination of the feedstock composition is 

economically disadvantageous and unsuitable from a practical point of view for 

continuous monitoring due to their high cost and the duration of the analysis. At the 

same time, at the industrial unit of the hydrodewaxing process, the fractional 

composition and density of feedstock are continuously determined. 

The aim of this work is to reveal the regularities of the distribution of the mass 

content of n-paraffins by the number of carbon atoms in the molecules in the 

hydrodewaxing feedstock as a stage of impoving the mathematical model [1]. 

As the initial data for the development of the methodology, hydrodewaxing 

feedstock compositions for different periods of operation of the industrial unit were 

used, which differ in the content of n-paraffins and the boiling point of 50 % of the 

fraction. The content of n-paraffins varies in a wide range from 14.81 % wt. up to 

19.36 % wt. The boiling point of the 50 % fraction varies in a wide range from 288 °C 

to 313 °C. The experimental data on the determination of the mass distribution of  

n-paraffins in the hydrodewaxing feedstock show that there are two peaks on the 

curve reflecting that the mixed feedstock consists of two fractions (n-paraffins C12-C18 

and n-paraffins C19-C27), and distribution of n-paraffins in each of these fractions 

obeys the normal distribution. Then, it is possible to describe the distribution of the 

mass content of n-paraffins by the number of carbon atoms in the molecule in the 

mixed hydrodewaxing feedstock by describing the distribution of the mass content of  

n-paraffins by the number of carbon atoms in the molecule in each fraction making 

up the mixed feedstock using the normal distribution function. 
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Figure 1. Peaks in the curve of 
n-paraffins mass distribution by the number of 

carbon atoms in the molecule (experimental data) 

Figure 2. Comparison of calculated and 
experimental values of the mass content of n-
paraffins by the number of carbon atoms in the 

molecule 

Fig. 2 presents a comparison of calculated and experimental values of the mass 

content of n-paraffins in the hydrodewaxing feedstock. The calculation error is 

comparable with the error of the experimental determination of the mass content of 

n-paraffins by analytical methods. 

Mathematical model, which takes into account n-paraffins distribution is written as: 

 

Z = 0, V =0, Ci = Ci0, T = T0 

Ci(x), kj(x), ks(x
/) – hydrocarbon content and reaction rate constants distribution 

functions; ν(x,x/) – distribution function of probability of bond breaking in paraffin in 

hydrocracking; V – catalyst load volume, m3; T – the process temperature gradient, 

K; Cp
m – the mixture heat capacity, J/mol·K; ∆Hi – the reaction enthalpy change, 

kJ/mol; x – the carbon atoms number in a hydrocarbon molecule; j – the hydrocarbon 

groups number. The first term in the material balance equation describes the 

reactions in which hydrogen is not involved, the second describes the reactions 

involving hydrogen, the third describes the paraffin hydrocracking reactions. 

Thus, the regularities of n-paraffins distribution in the hydrodewaxing feedstock, 

as hydrocarbons that have the greatest influence on the low-temperature properties 

of diesel fuels, were revealed. 
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NUMERICAL SIMULATION OF THE WORK OF A SOAKER 
VISBREAKING UNIT 

Esipov D.V., Cherny S.G. 

Kutateladze Institute of Thermophysics SB RAS, Novosibirsk, Russia, 
denis@esipov.org 

An original mathematical model of the reacting flow of mixtures has been 

developed. The model consists of the Navier – Stokes equations for the mixture and 

a set of transport equations for the component concentrations. The model is multi-

speed and has a single pressure. The separation of components is described by 

stationary sedimentation or rising due to buoyancy force. The mixing of components 

is described by a simple turbulence model based on the Boussinesq assumption. 

Other main features of the model include the assumption of weak compressibility of 

the phases, the considering of the average volumetric velocity of the mixture, and 

taking into account gaseous (bubbles) and solid (particles) components. The 

developed model is much simpler than it is usually used, but it describes all the 

necessary hydrodynamic processes in the soaker. 

All equations are solved step by step. The numerical method for solving the 

Navier – Stokes equations is an improved SIMPLE-like method. It has a second 

order of approximation on time and space. The second order TVD and five order 

WENO schemes are used to solve the transports equations. The numerical model is 

implemented in the FORTRAN code for the 2D and 3D statement on a structured 

rectangular grid. The hydrodynamic part of the model has been verified against the 

solution of several benchmark problems. Good agreement with the results of other 

authors and experimental data is observed. 

Three lumped kinetic models of the thermal cracking process have been 

developed. The entire numerical model, taking into account chemical reactions, has 

been tested on benchmark problems of cracking. Simulation of the vertical reaction 

chamber (soaker) of the visbreaking unit have been performed. Simulation results 

include flow patterns in the reaction chamber for various inflow conditions, places of 

the intensification of chemical reactions, the distribution of chemicals through the 

reaction chamber, and the chemical composition of the yields. Using obtained 

results, some optimizations of the shape of the reaction chamber and the internal 

structures (turbulent vortex generators) are proposed. 

The reported study was funded by RFBR, project number 20-01-00440. 
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DEEP HYDRODESULFURIZATION OF GAS OILS WITH HIGH 
SULFUR CONTENT: KINETIC MODELING 

Aleksandrov P.V., Reshetnikov S.I., Bukhtiyarova G.A., Noskov A.S. 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, reshet@catalysis.ru 

Hydrodesulfurization (HDS) that has been used in refineries for the production of 

ultra-low sulfur diesel (ULSD) for many years is facing new challenges now [1]. The 

depletion of oil resources along with the deterioration of oil quality is the reason for 

the involvement in the processing of straight-run gas oils with high, up to 2 mass. %, 

sulfur content (SRGO-S) and secondary diesel distillates, which contain the 

enhanced quantities of N-, S- containing compounds and aromatics.  

The kinetics of oil fractions hydrodesulfurization is usually described in terms of 

lumps of sulfur-containing components which are converted according to first- or 

second-order kinetics [2]. Meanwhile middle distillates, like gas oils, includes a wide 

range of sulfur-containing compounds of different reactivity, the most refractory being 

benzothiophenes, dibenzothiophenes and benzonaphthothiophenes. So, modeling 

the deep HDS of a SRGO-S or its mixture with secondary gas oils requires more 

accurate kinetic modeling that considers more detailed components and rate 

equations of the Langmuir-Hinshelwood type.  

The present work describes an approach to constructing of a kinetic model of the 

hydrodesulfurization process based on the combination (grouping) of the individual 

sulfur-containing compounds into four groups with various reactivities: three groups 

of dibenzothiophenes differing in structure and reactivity and one group for other 

sulfur-containing compounds. In developing the kinetic model, the experimental data 

were used, obtained during hydrotreating of SRGO-S and their mixtures with light 

coker gas oil (15 and 30 wt. %) over CoMo/Al2O3 catalyst at 0,8-3,5 h–1, 3,5 MPa, 

335, 350 and 365 °C. The sulfur content exceeds 2 wt. % in both SRGO-S 

(2,08 wt. %) and coker gas oil (2,286 wt. %). 

The individual S-containing compounds were quantified with an Agilent 6890N 

chromatograph equipped with a JAS atomic-emission detector (Figure), the overall 

contents of S and N in the feed were determined using Antek 9000NS.  
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Figure. Typical 181S chromatogram of 
sulfur-containing compounds in SRGO 

The form of kinetic equations for each group of sulfur- and nitrogen-containing 

compounds was developed on the base the general form (see equation 1) by 

specifying the type that most accurately describes the experimental data. The 

parameters of kinetic equations are obtained by minimization of the sum of squares 

of residual of the sulfur- and nitrogen-containing compounds in experiments. 
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were Сi – group of sulfur- or nitrogen-containing compounds concentration;  

Сj – reaction inhibitors concentration; k0i, EAi, KH, Kj, ,  – model parameters. 

The comparison of the experimental and calculated values of sulfur in the feed let 

us to conclude, that developed kinetic model describes the process of deep 

hydrodesulfurization of SRGO-S and theirs mixtures with light coking gas oil (up to 

30 %) in a wide range of conditions (feedstock composition, temperature and 

pressure). The model takes into account the changing the composition of the 

feedstock with better accuracy compared to the models based on the traditional first- 

or second-order kinetics. As well, the developed kinetic model and the same set of 

parameters were successfully used for the prediction of sulfur content during HDS of 

the straight-run gas oil, differing in origin, sulfur and nitrogen content from SRGO-S 

(1,076 wt. % versus 2,082 wt. % of S; 113 versus 186 mg/kg of N). The obtained 

results demonstrated that proposed approach can be successfully used for the 

prediction of process condition needed for ULSD production from SRGO and their 

mixtures with coker gas oil. 
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IMPACT OF CYCLOALKANES ADMIXTURE IN ALKANE 
HYDROCRACKING 

Nebojša Korica1, Pedro S.F. Mendes1, Jeriffa De Clercq2, Joris W. Thybaut1 

1Laboratory for Chemical Technology, Ghent University, Ghent, Belgium, 
nebojsa.korica@ugent.be 

2Industrial Adsorption and Catalysis Technology, Ghent University, Ghent, Belgium 

Introduction 

One of the most widely employed routes to upgrade low-value oil refinery streams 
and alternative feedstocks is hydrocracking over bifunctional catalysts featuring both 
metal and acid sites [1]. A maximum isomer yield can be achieved by, so-called, 
ideal hydrocracking. As industrial hydrocracking feed is a complex mixture of, among 
others, alkanes, cycloalkanes and aromatics, the goal of the present work is to 
determine and to analyze impact of co-feeding cycloalkanes on alkane ideal 
hydrocracking.  

Methodology and results 
Ideal hydrocracking is experimentally indicated by a decreasing total conversion 

with increasing pressure. The transition between ideal and non-ideal hydrocracking is 
not only catalyst dependent [1], but can also be triggered by operating conditions and 
feedstock composition. Decrease of temperature and/or increase of total pressure 
favor ideal hydrocracking of pure fed alkane [2]. Furthermore, increase of H2 to 
hydrocarbon ratio and carbon number of reacting molecule will favor non-ideal 
hydrocracking [2]. Differences in overall reactivity and/or types of elementary steps in 
hydrocracking of the components in real feedstock motivates us to investigate the 
impact of co-reacting cycloalkanes on ideal behavior of hydrocracking catalysts [3,4]. 

An experimental campaign covering the operating conditions as listed in Table 1, 
with n-octane and methyl-cyclohexane as model molecules has been performed to 
assess the impact of cycloalkane on transition from ideal to non-ideal hydrocracking 
of alkane. 

Table 1. Experimental conditions 
Feed, mol:mol  n-octane : methyl-cyclohexane 1:0 ; 0:1 ; 1:1 
Catalyst  0.5 wt % Pt / USY(CBV712) zeolite 
Temperature, °C  230 ; 250 ; 270 
Pressure, bar  10 ; 20 

Ideal n-octane hydrocracking was observed within the investigated range of 
operating conditions. The n-octane conversion decreased with increasing total 
pressure at all investigated temperatures, see Figure 1. Maximum yield of octane 
isomers, which has been observed for pure n-octane feed, was obtained in 
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HYDROTREATMENT OF CRUDE BIO OILS USING LOW COST 
SLURRY CATALYSTS 

Roman Tschentscher1, Lea Simon2, Patrick Biller3, Pandurangan Arumugam4, 
Ruth Elisabeth Stensrød1 

1SINTEF Industry, Oslo, Norway, roman.tschentscher@sintef.no 
2École Normale Supérieure de Rennes, France 

3Aarhus University, Denmark 
4Anna University, Chennai, India 

Direct biomass liquefaction technologies have become mature in the last decade. 
Fast and slow pyrolysis is operated at commercial scale, while several 

hydrothermal liquefaction processes are scaled up. Still, the produced crude bio oils 
have a low economic value. They contain significant amounts of water and ash as 
well as varying amounts of oxygen. The hydrotreatment research focusses strongly 
on trickle beds and commercial hydrotreatment catalysts. Challenges of this 
approach are the high reactivity of bio-based oxygenates, the poor bio crude 
miscibility with refinery streams resulting in mal-distribution and accelerated coking. 

In this work we discuss an approach which is adopted from the original Bergius 
process and more recent developments of coal liquefaction. The process utilizes a 
slurry reactor and high boiling point solvents. The solvent functions as heat transfer 
agent, hydrogen donor and stabilizes catalyst and products against coking. Such 
reactors provide intense mixing of non-miscible phases and a complete wetting of the 
catalyst surface, combined with high mass and heat transfer rates. The use of non-
toxic lowcost slurry catalysts for bio crude upgrading allows a simple replacement 
without the need of regeneration. The catalyst further acts as trap for ash and other 
inorganics providing a purified hydrogenated product that can be processed by 
downstream operations, such as hydrocracking or isomerization towards a premium 
fuel. 

The catalyst was prepared based on the method of Li et al. [1]. This batch 
preparation method was translated into a continuous process applying flow chemistry 
principles and low-cost mixers. HTL crude oil from pine was produced at the pilot 
scale facility at Aarhus University. Details of the production conditions are given 
elsewhere [2]. The hydrogenation tests were performed using a stirred batch 
autoclave of 200 mL. Tetralin and a premixed paste of catalyst and HTL crude oil 
was transferred into the reactor and stirred overnight. Hydrogen was added at room 
temperature to provide a pressure at reaction temperature of 200 bar. The reactor 
was heated using 50 K/min under vigorous stirring to a reaction temperature between 
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MULTIFUNCTIONAL COBALT-BASED NANOREACTORS FOR THE 
COMBINED FISCHER-TROPSCH SYNTHESIS AND 

HYDROPROCESSING: MATERIAL SYNTHESIS AND CATALYSIS 

Angela Straß-Eifert and Robert Güttel* 

Institute of Chemical Engineering, Ulm University,  
Albert-Einstein-Allee 11, 89081 Ulm, Germany, 

*Corresponding author e-mail:  robert.guettel@uni-ulm.de 

The broad product distribution obtained from Fischer-Tropsch (FT) synthesis 

requires additional workup by hydroprocessing, usually performed in a separate 

reactor at temperatures exceeding 350 °C. An alternative is the combination of both 

reaction steps within one single reactor, which requires a compromise between the 

non-compatible operation conditions. However, this concept was proven on different 

scales already with remarkable success [1-2]. We transfer this approach to the 

nanometer scale, by designing nanoreactors in a core-shell architecture. Those 

materials offer, besides the catalytic bifunctionality, also the stabilization of the active 

metal nanoparticle from deactivation by sintering. In addition it is possible to tailor the 

combination of physical and chemical functionalities [3]. While chemical functionality 

concerns the catalytic features, physical functionalities include the sieve effect 

among others. The sieve effect in particular is responsible for the nanoparticle 

stability and the exclusion of large molecule appearance at the same time. Kruse and 

co-workers demonstrated this novel concept already successfully, which is based on 

encapsulation of cobalt cores within a zeolitic matrix to link both FT and 

hydrocracking activity in one single nanoparticle [4].  

The obtained results reveal a better resistance against catalyst deactivation for 

> 1000 h (time on stream), as well as a narrowed chain length distribution. In 

particular, Figure 1 exemplarily shows the product distribution of bifunctional 

catalysts, active in FT reaction and hydroprocessing (red) compared to those only 

active for FT synthesis (green). Obviously, the product distribution in presence of 

HZSM-5 is substantially different from those obtained with a non-acidic SiO2 support 

material, exhibiting a larger fraction of long-chain hydrocarbons. The data thus shows 

a significant shift in product distribution, which is also underlined by the aggregation 

state of the wax samples at room temperature (Figure 1, right).  
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In the JKSimFloat package, the kinetic approach is implemented through the 

industrial data distribution model of floatability classes (Floatability Component Scale-

up model - FCTP), based on the assertion that extracting each floatability class into a 

concentrate is a function of several parameters [1]. 

The FCTP model is based on the assertion that the extraction of each class of 

floatability into a concentrate is a function of several parameters, and it is proposed 

to determine the kinetic constant by (1): 
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 (1) 

Rf is the foam product yield, fractions of a unit; QA – air flow, m3 / s; di – diameter 

of a single bubble, cm; A – cross-sectional area of the working area of the flotation 

machine, m2; P is an indicator of floatability, reflecting the probability of a particle 

fixing on a bubble and its further transfer to the foam product through the act of 

flotation or mechanical removal. In the course of the work, variants of the given 

technological scheme were simulated with the replacement of the type of flotation 

flotation equipment in cleaning operations. The methodological approach and 

modeling algorithm are described in [2]. 

The results of technological indicators are given in table 1. 
Table 1. Comparison table of key technological indicators 

 Conten 
FeS2,% 

Recovery  
FeS2,% 

Conten  
FeAsS,% 

Recovery  
FeAsS, % 

Initial design 19,536 65,561 4,010 60,523 
Column flotation machines 19,361 94,562 3,978 88,618 
Mechanical machines 18,760 95,817 3,869 90,126 

Thus, the simulation of separating rectors (flotation machines) will allow us to 

justify the optimal technological scheme and equipment for its implementation from 

the point of view of extracting a valuable component. 
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IMPROVED MICROKINETIC MODELS FOR OXIDATIVE COUPLING 
OF METHANE (OCM) USING DEEP REINFORCEMENT LEARNING 

AND HIGH THROUGHPUT EXPERIMENTS 

Sultan Alturkistani1, Haoyi Wang1, Khalid Alhazmi1, Kiran Yalamanchi1,  
Jorge Gascon2, S. Mani Sarathy1 

1King Abdullah University of Science and Technology (KAUST), Clean Combustion 
Research Center, Thuwal, Jeddah, 23955, Kingdom of Saudi Arabia 

2King Abdullah University of Science and Technology (KAUST), KAUST Catalysis 
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Increased production of natural gas has motivated interests to develop advanced 

chemical technologies that valorise methane. Oxidative coupling of methane (OCM) 

to produce C2 paraffins and olefins is a promising route for producing value-added 

chemical feedstocks. However, to date, this chemical process has not been 

commercialized yet and it still relies on researcher’s development. Improvements can 

be made through advancing micro-kinetic models describing the surface and gas-

phase reactions. Past research in the development of OCM micro-kinetic models has 

been hindered by the lack of experimental measurements and incomplete 

understanding of how catalyst descriptors map onto kinetic model parameters. In this 

work, high throughput catalytic reactor experiments are combined with a deep 

reinforcement learning algorithm to study OCM catalysis micro-kinetics. 

High throughput experiments are performed using the Avantium Flowrence 

equipment based on nanostructured LA2O3 catalysts. To reflect the effect of catalyst 

composition in the microkinetic models, different weight percent of metals, such as 

Sr, Ce, and Ir, are doped. Also, different process variables such as bed temperature, 

gas hour space velocity, methane to oxygen ratio, and operating pressure are 

investigated. Then, a novel informatics framework based on reinforcement learning 

(RL) acts as the connector between experiment results and simulation software. This 

provides a method of direct knowledge extraction from the experimental and 

numerical data. CHEMKIN PRO is used to simulate a packed bed reactor using Chen 

et al.’s [1] surface reactions and AramcoMech 3.0 gas-phase reactions. The 

parameters for each reaction are written in the form of Arrhenius’ equation, as given 

in: 
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MICROWAVE-ASSISTED SYNTHESIS OF ETHYL HEXANOATE 
FOLLOWING A Ping-Pong Bi-Bi KINETICS WITH INHIBITION BY 

BOTH SUBSTRATES 

Vittorio Romano*, Rino Apicella 

Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 
132, 84084 Fisciano (SA), * vromano@unisa.it 

Synthesis of ethyl hexanoate from hexanoic acid (A) and ethanol (B), in a solvent 

free system, has been modeled. Optimum conditions to carry out this reaction, whose 

rate equation can be described by the Ping Pong Bi Bi mechanism [1], are reached 

when temperature is around 50 °C, enzyme dose is about the 2 % w/w and molar 

ratio acid to alcohol is 1:3 [2]. Since the reaction is endothermic (∆Hr = 23000 J/mol), 

a microwave heating is provided to prevent its shutdown. Microwaves allow to 

maintain the temperature in an optimal range for enzymes and they can be 

successfully used in organic synthesis to reach high conversions [3]. Being the 

physical system a tube with length equal to L and radius equal to R, in which the 

reactant mixture moves as a plug flow with velocity v , the mathematical model, that 

takes into account the time-dependent heat and mass transfer equations and the 

frequency domain Maxwell equations, consists of the following partial derivatives 

equations and initial and boundary conditions, written for a cylindrical coordinate 

system (r, θ, z) [4]: 
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REGULARITIES OF CHEMICAL TRANSFORMATIONS IN 
HYDROTREATING OF VACUUM GAS OIL DERIVED FROM 

KAZAKHSTAN OIL 

Belinskaya N.S.1, Ivashkina E.N.1, Oreshina A.A.1, Vymyatnin E.K.1,  
Arkenova S.B.1, Afanasyeva D.A.1, Krivtsova N.I.1, Kaliev T.A.2 

1National Research Tomsk Polytechnic University, Tomsk, Russia 
2S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan 

belinskaya@tpu.ru 

The efficiency of vacuum gas oil catalytic cracking depends on the activity, 

selectivity and stability of microspherical zeolite catalysts to the greatest extent. The 

irreversible loss of activity and selectivity of the cracking catalyst occurs due to 

poisoning by heavy metals such as Ni and V. In this case, pore blocking and 

destruction of the zeolite structure occur [1]. Therefore, thorough preparation of the 

raw materials before processing in the catalytic cracking process is required. 

The main purpose of the vacuum gas oil hydrotreating is hydrodesulfurization 

with the aim of preparing raw materials for further processing at a catalytic cracking 

unit. Preliminary upgraiding of raw materials is achieved by removing heteroatomic, 

unsaturated compounds and partially polycyclic aromatic compounds from petroleum 

fractions in a hydrogen atmosphere on catalysts. 

Mathematical models of hydrocarbon feed conversion processes are reliable 

tools for predicting the yield, composition and properties of the products, evaluating 

the degree of catalyst deactivation, increasing the resource efficiency of processes 

by optimizing process parameters and extending catalyst service life [2]. 

The aim of this work is to develop a mathematical model of vacuum gasoil 

hydrotreating. 

The initial stage in the development of a mathematical model is to establish the 

regularities of chemical transformations during the process. 

To identify the key components involved in chemical transformations during the 

vacuum gas oil hydrotreating, analysis of the compositions and properties of raw 

materials and products was carried out. The following methods were used: the 

cryoscopy method at the KRION-1 apparatus for determining the molecular weight of 

substances; Stabinger viscometer SVM3000 (Anton Paar) for measuring density, 

dynamic and kinematic viscosity of samples; SPECTROSCAN S X-ray energy 

dispersive analyzer for measuring the mass fraction of sulfur in petroleum fractions. 
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The sulfur content in the raw materials varies from 0.006 % wt. to 0.010 % wt., in 

the product – from 0.000 % wt. to 0.002 % wt. The density of raw materials varies 

from 901 kg/ m3 to 907 kg/m3, the density of the product – from 890 kg/m3 to 

893 kg/m3. The content of aromatic hydrocarbons in the raw materials varies from 

43.0 % wt. to 45.5 % wt., the content of paraffins and resins varies from 57.0 % wt. to 

54.5 % wt. The aromatic hydrocarbon content in the product varies from 36.0 % wt. 

to 41.0 % wt., the content of paraffins and resins varies from 64.0 % wt. to 59.0 % wt. 

Fig. 1 presents the developed formalized scheme of chemical conversions in 

vacuum gas oil hydrotreating process. 

 
Figure 1. Formalized scheme of chemical conversions in vacuum gas oil hydrotreating process 

The developed formalized chemical conversions scheme includes the conversion 

of hydrocarbons, sulfur, nitrogen, and metal compounds. 

This degree of formalization allows takinge into account key chemical 

transformations that affect the quality of vacuum gas oil preparation for further 

processing. 
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Emissions produced during the operation of automotive combustion engines 

contain traces of harmful substances such as CO, NOx, unburned hydrocarbons and 

particulate matter (soot). Catalytic converters are used to clean up gaseous 

emissions while the soot is trapped in a filter. The fundamental part of both catalyst 

and filter is a ceramic monolith with honeycomb structure formed by a number of 

parallel channels. The particulate filter has channels plugged alternately at the inlet 

and outlet so that the gas is forced to flow through the porous wall into the adjacent 

channel and the soot is trapped. The current development aims on particulate filters 

with an integrated active catalyst that can simultaneously convert the harmful gas 

components and trap the soot. 

This contribution focuses on lab-scale deposition of a model catalytic layer  

(Pt/-Al2O3) into the channels of cordierite monolith substrates by washcoating, and 

characterization of the resulting microstructure by X-ray tomography (XRT), scanning 

electron microscopy (SEM) and mercury intrusion porosimetry (MIP) [1]. By changing 

the deposition conditions of the catalyst layer, it was possible to control the amount of 

catalyst inside the substrate wall or on top of the wall. 

X-ray tomography provided 3D image of the porous channel wall with the 

resolution 1 micron and it was possible to segment the two solid phases (substrate 

and coating). In addition to the conventional XRT, a time-resolved XRT imaging of 

the sample during the drying process was performed in a special rotating cell. The 

SEM and MIP provided further insight into smaller internal pores in the coated zones. 

Porosity, thickness and uniformity of the layer along the channel were evaluated from 

the electron microscopy images. The obtained data provide detailed information on 

the 3D morphology of the samples, which can be then employed in pore-scale 
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simulations of flow, diffusion, reaction and filtration in the microstructure of the 

catalytic filter wall [2]. 

References 

[1] Václavík M., Plachá M., Kočí P., Svoboda M., Hotchkiss T., Novák V., Thompsett D. Structure 
characterisation of catalytic particulate filters for automotive exhaust gas aftertreatment. Materials 
Characterization 134 (2017), 311-318. 

[2] Kočí P., Isoz M., Plachá M., Arvajová A., Václavík M., Svoboda M., Price E., Novák V.,  
Thompsett D. 3D reconstruction and pore-scale modeling of coated catalytic filters for automotive 
exhaust gas aftertreatment. Catalysis Today 320 (2019), 165-174. 



PP-7 

285 
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EXPERIMENTAL AND MODELING INFORMATION 

Edward S. Blurock 
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CHEMCONNECT distinguishes itself from other repositories by having an 

extensive knowledge base [1] of experimental devices, protocols and data, created in 

collaboration with experimentalists and modelers in the field. This knowledge base is 

represented in an extensive interconnected network of concepts and data. These 

concepts allow for convenient uploading of data, its subsequent interpretation and 

efficient search of chemical information. 

The knowledge base gives context and meaning to the data that is uploaded to 

the database. It also allows the experimentalist and modeler to upload data in their 

format convenient to them. The goal of CHEMCONNECT is not to restrict input to 

any particular format. 

The interlinking of data and concepts within CHEMCONNECT facilitates efficient 

and thorough search for data within the repository. The interface promotes linking 

data to the devices (even sensors and subsystems of the device), protocols 

(methodologies and procedures used to generate the final results), researchers (the 

institution, the lab and even who performed the experiment) and external sources 

and references (websites and publications). 

Ontology knowledge base of devices, protocols and datasets 

The primary tool representing combustion knowledge is the ontology from the 

semantic web [2]. The ontology also drives the user interface. Common combustion 

instrumentation, such as shock tubes, rapid compression machines, heat flux 

burners, molecular beam experiments, perfectly stirred reactors, to name a few, and 

data have been characterized and represented within a comprehensive ontology. 

This was done in collaboration with researchers using and developing these devices. 

Included within these ontology descriptions is a hierarchy of concepts and purposes 

giving extended context for more generality. 

The ontology knowledge base [3] provides a template description of the devices, 

the protocols and the data. These general templates are filled in with characterizing 

details (particularly differences) of the devices and protocols. For example, the 

device template views an experimental device as a set of subsystems, modules and 
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sensors. Associated with each component is a set of parameter descriptions 

(established through literature search and collaboration with experimentalists), 

references (both web and publications), images, and text describing these parts and 

the data produced. These descriptions characterize a particular component and 

differentiates them from other similar components. The data is also characterized 

through protocols from ‘raw’ data coming from the instrument sensor, to intermediate 

results and interpretations of the data to the final published results. Protocol 

templates link data sets with methodologies, devices and further protocols that 

manage data to the final published result. A dataset template is a set of groups 

measurements. Only the type, such as ‘temperature’ is specified, not the specific unit 

(that choice Is left to the specific application of the template). 

CHEMCONNECT is implemented and available (requires signing up for a freely 

available account) on a cloud-based server [4]. An extensive interface facilitates data 

entry visualization and search. Data uploaded by a user can be private, available to a 

consortium or made public. 
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of the feed gases have been varied systematically. The product gas streams were 
monitored by GC (Agilent 7890B GC System). To get an understanding of the 
deactivation of the catalyst/reaction system, long-term FBR experiments have been 
performed. The feed gas was varied between propane and propene diluted in 
nitrogen and air at different concentrations. Propene was identified as the main coke 
precursor in this reaction network [4]. For an online monitoring of coke growth, a 
thermo gravimetric setup (Netzsch STA 449 F5) was used to observe deactivation of 
the catalyst under defined conditions. As well as in the FBR coking experiments inlet 
feed composition and temperature were varied systematically. The outlet gas flow 
was analyzed dynamically by Fast/Micro GC (Agilent 490 Micro GC System) during 
the experiments. The coked catalyst was afterwards regenerated by gasifying the 
coke deposits in a TGA. To describe the deactivation and regeneration phase, 
different kinetic approaches have been formulated and were parametrized and 
validated. 

Simulation 

To find suitable reaction conditions for pilot plant experiments, numerous 
simulations with different levels of detail were carried out. For 1-D simulations 
MATLAB® was used. In more complex 2-D models the simulations were performed 
with Comsol Multiphysics® 5.4. Special interest was paid to different transport 
phenomena inside of the catalyst bed ( - model or - model). Furthermore, the 
different reactor configurations and resulting temperature trend caused by scale-up 
from lab to pilot scale were evaluated.  

Results 

It was possible to model the dehydrogenation dynamics of propane considering 
different levels of complexity (1-D vs 2-D, - model vs - model) and evaluating 
multiple experiments in a broad range of operation conditions. More recently, 
experiments on pilot scale have been performed to evaluate the results. 
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SIMULATION OF HYDROCARBON PYROLYSIS NON-STATIONARY 
PROCESS 

Bunaev A.A., Dolganova I.O., Dolganov I.M., Ivanchina E.D.,  
Chernyshov M.N., Mezhova M.Yu. 

National Research Tomsk Polytechnic University, Tomsk, Russia,  
E-mail: aiurbunaev@gmail.com 

For various industries in the petrochemical industry, such a process as pyrolysis 

of hydrocarbons is one of the main large-capacity supplier of raw materials. 

Improvements in the field of pyrolysis are carried out via two main approaches. 

One of them is modernization of the pyrolysis technology itself, e.g., the development 

of more efficient burner devices or search for the new catalysts. Another one is 

creation of stochastic or deterministic mathematical models to determine the most 

optimal working conditions. From this point of view, creation of a deterministic model 

is of greatest interest, since such models allow us to analyze the process from all 

sides [1]. 

The analysis of hydrocarbon pyrolysis was performed using the model of the 

kinetics of the process proposed by Y. Zhorov et al. This model is based on a 

simplified reaction network, which, however, makes it possible to calculate the 

concentrations of the of the mixture in a wide temperature range. 

The model of kinetics includes 8 reactions listed below, where 12 components 

are present [2]: 

 C2H6 → 0.47C2H4 + 0.53CH4  (1) 

 C3H8 → 0.32C2H4 + 0.34C2H6 + 0.16C3H6 + 0.18CH4  (2) 

 C4H10 → 0.10C4H6 + 0.32C2H4 + 0.27C3H6 + 0.15C2H6 + 0.16CH4  (3) 

 C5H12 → 0.16C3H6 + 0.37C2H6 + 0.35C2H4 + 0.12CH4  (4) 

 C2H4 → 0.15C2H2 + 0.85H2 (5) 

 C2H4 → polymers  (6) 

 C3H6 → polymers  (7) 

 polymers → coke  (8) 

Thus, mathematical model of kinetics of pyrolysis process consists of 18 

equations. 7 of them are exponential equations designed to calculate rates of 

reactions.  

 	 exp , ∈ 1. .7   (9) 
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With the help of a laboratory set-up, the dependence of the conversion of cross-

linked polyethylene into gaseous and liquid products depending on the pyrolysis 

temperature was established. 

The nonlinear regression method was used to determine the kinetic parameters 

of each stage separately and the model of the cross-linked polyethylene pyrolysis 

process. 

Comparison of estimates of the applied kinetic models allowed to determine that 

the most accurate process of thermal destruction of crosslinked polymer is described 

by a model containing 2 successive stages. 

The process of destruction of cross-linked ethylene occurs most intensively in the 

temperature range 433.3-465.3 °C. The optimum temperature of the pyrolysis 

process is 500 °C, which allows to obtain the highest yields of liquid products and to 

achieve the maximum calorific value of the resulting pyrolysis gas. The process of 

thermal destruction most likely proceeds in two consecutive poorly separable stages 

with activation energies of 224 and 310 kJ/ mol. 
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A. Nikitin str., 22, 170026 Tver, Russia, sulman@online.tver.ru 

Oil refining, as well as the synthesis of oil-related products, involves the formation 

of oil residues. Oily waste can be a valuable source of energy and chemicals. 

Among the various methods of thermal processing of oil residues, pyrolysis [1], 

gasification [2], combustion [3], and joint pyrolysis [4] are the most studied. 

During thermal destruction, valuable gaseous and liquid products, mainly 

hydrocarbons, are obtained [5]. The composition of the product depends on the 

nature of the oil residue, process conditions and the presence of a catalyst [6]. 

The process of catalytic pyrolysis of oil residues with the use of natural (kaolin 

and bentonite clay) and synthetic (H-beta-25 and H-ZSM-5) aluminosilicates as a 

catalyst is investigated. 

A catalyst was also synthesized by mixing of bentonite clay and zeolite (H-ZSM-5). 

The study of the pyrolysis process was carried out on a laboratory set-up 

consisting of a continuous metal reactor. The residence time of raw materials in the 

heating zone of the reactor was less than 20 seconds. The heating of the reactor was 

carried out by an electric furnace with a thermoregulator, providing temperature 

maintenance in the range of ±5 °C. The temperature of the process varied in the 

range of 500-750 °C. During the experiment, the rate of release of gaseous products 

was recorded. Pyrolysis gases were analyzed by gas chromatography. The specific 

heat of combustion of gases was determined on a specially designed analyzer based 

on a flame temperature detector. 

The effect of the pyrolysis process temperature on the yield of solid, liquid and 

gaseous products was investigated. As the process temperature increases, the yield 

of the heavy oil fraction gradually decreases over the entire study range, and the 

yield of gaseous products increases. 

The study of the influence of aluminosilicates on the process of destruction of oil 

residues was carried out at a temperature of 600 °C. All the studied catalysts 

increased the yield of solid carbon residue, which indicates an acceleration of the 

reaction of coke formation on the surface of aluminosilicates. The highest yield of 

gaseous and liquid products was observed in the presence of zeolite H-ZSM-5. The 

mass of gas increased by 37 %, the light oil fraction by 18 % compared to the non-
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catalytic process. In the presence of this catalyst, the yield of heavy oil fraction is 

significantly reduced from 54 to 37 % (wt.) 

The optimum temperature of the pyrolysis process of oil residues was determined 

– 600 °C. Synthetic aluminosilicates showed the greatest activity in the process of 

thermal degradation of oil residues. They increased the yield of gaseous products 

and light petroleum fraction. Synthesized catalyst bentonite/H-ZSM-5 has lower 

activity than zeolite H-ZSM-5. But its application increases the yield of gaseous 

products and light oil fractions compared to the non-catalytic process. The 

introduction of bentonite clay into the catalyst reduces its cost, which makes catalytic 

pyrolysis using a synthesized catalyst more promising. 
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One of the most economically feasible routes for processing heavy oil residues is 

delayed coking, which yields additional valuable petroleum products and more 

advanced oil processing at a minimum cost [1]. The main goal of carbonization 

processes is to produce various types of oil cokes depending on the quality of the 

used precursors. The generally accepted mechanism of the oil residue carbonization 

is the so-called “consecutive scheme” of hydrocarbon consolidation [2]. The carbide 

cycle mechanism opens new opportunities for enhancement of the delayed coking 

technology [3,4]. Nickel metal has the highest activity in the formation of carbon 

nanostructures. One can expect that the addition of nickel catalysts to the 

carbonization feedstock will result in the interaction of the active catalyst particles 

with the hydrocarbons present in the heavy oil residues yielding oil coke reinforced 

with carbon materials. Furthermore, nickel catalysts are widely used in oil 

desulfurization. The present study was devoted to catalytic tar carbonization in the 

presence of Ni/Sibunit, Cu/Sibunit and Ni-Mo/Sibunit catalysts. Particular attention 

was paid to the contents of sulfur compounds in the reaction products.  

The tar carbonization was studied in the temperature range of 350-500 °C. The 

gaseous products formed during the tar carbonization at 450 °C were analyzed for 

the concentration of sulfur-containing compounds. The original tar contained 

1.5 mass. % S. H2S and COS were observed in the reaction products. So, sulfur was 

partially removed from the tar with the gas phase during its thermal carbonization. An 

increase of the carbonization temperature from 450 to 550 °C led to the decrease of 

the coke yield due to deeper cracking of the tar components and simultaneous 

decrease of the sulfur concentration in the coke.   

The addition of the Ni/Sibunit catalyst to the tar improved the properties of the 

obtained oil coke. The coke yield increased from 28 to 33 % whereas the sulfur 

concentration in the coke decreased.  

The efficiency of the carbonization process and the properties of the obtained 

coke were further improved by placing three different catalysts Ni-Mo/Sibunit, 

Cu/Sibunit and Ni/Sibunit in different zones of the autoclave where the tar 

carbonization was performed. In zone 1 the tar was subjected to cracking and 
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desulfurization over the 8%Ni-2,5%Mo/Sibunit catalyst. In zone 2 sulfur was trapped 

by the Cu/Sibunit catalyst in the form of copper sulfide. In zone 3 coke was formed 

over the Ni/Sibunit catalyst predominantly from the gases formed by the tar cracking. 

Due to such catalyst arrangement, the coke yield in zone 1 was 27 % of the initial tar 

weight, whereas its yield in zone 3 was as high as 18 %. So, the total coke yield was 

equal to 45 % (Table). 

Table. Coke and sulfur distribution in different zones of the autoclave after the tar 
carbonization at 450 °C 

Number of zones 1 2 3 
Catalyst Tar +Ni-Mo/Sibunit Cu/Sibunit Ni/Sibunit 
Coke yield, wt. % of the initial tar 27 4.5 18 
S concentration, wt. %. 1.28 1.1 0.56 

Meanwhile, its yield during the thermal carbonization was only 28 wt. %. The 

three-zone arrangement of the catalyst also led to a substantial decrease of sulfur 

concentration in the solid reaction products. Thus, the coke in zone 3 of the 

autoclave contained only 0.56 % S. This is due to the capture of sulfur in the form of 

copper sulfide in the second zone of the reactor. 
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2Novosibirsk State University, Novosibirsk, Russia 
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Terpenoids form the largest group of natural compounds and are extensively 

applied as platform molecules in food, pharmaceutical and perfumery industries. 

Terpenoids often contain asymmetric centers and several functional groups, 

including reducible ones. Development of stereo-, regio- and chemoselective 

catalysts for reduction of different functional groups in terpenoids aiming at 

production of valuable intermediates for fine chemicals and pharmaceuticals is a 

challenging task. Hydrogenation of monoterpenoid oximes is one of the key steps in 

the synthesis of valuable compounds, including those with carbonyl and amino 

groups. In the present work, the focus was on the catalyst design for direct 

transformation of monoterpenoid oximes into valuable amines or carbonyl 

compounds. 

Liquid-phase hydrogenation of monoterpenoid oximes was carried out in a batch 

reactor at 353-373 K under H2 atmosphere. Gold, gold-platinum and platinum 

catalysts on metal oxides, including TiO2, ZrO2, Al2O3, MgO, were prepared by the 

deposition-precipitation and impregnation methods, respectively. The catalysts were 

characterized by N2 physisorption, TEM, XPS, XRF. The reaction mixture was 

analyzed by GC (HP-5), GC-MS (HP-5ms) and NMR. Monoterpenoid oximes with 

different structures, including menthone, carvone, fenchone, camphor oxime, were 

selected taking into account their practical interest. A detailed study of menthone 

oxime hydrogenation was performed. The active metal, the metal nanoparticles size 

and the support nature affected noticeably the catalytic behavior. An increase of the 

gold nanoparticles size and application of metal oxides with a strong basic character 

such as magnesia favored deoximation to menthone. Au/Al2O3 and Pt/Al2O3 catalysts 

with metal nanoparticles sizes of 2.0 and 0.9 nm, respectively, were shown to provide 

higher catalytic activity and selectivity to menthylamine. The solvent nature on the 
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reaction regularities was explored using apolar and aromatic, polar aprotic and protic 

solvents. The reaction kinetics including the recyclability and the impact of the 

deactivation was studied using Au/Al2O3 catalyst allowing to propose a detailed 

reaction scheme. Selected catalysts were successfully used for camphor and 

fenchone oximes hydrogenation to the corresponding amines. The reaction 

conditions were tuned depending on the substrate structure to provide the highest 

yield of the target amine and to avoid the catalysts deactivation. A one-pot synthesis 

of dihydrocarvone comprising sequential transformations of carvone oxime to 

dihydrocarvone over Au/TiO2 catalyst (Fig. 1) [1], which is a novel approach to obtain 

a valuable additive in food industry, was developed. 

 

Fig. 1. Carvone oxime transformation to trans-/cis-dihydrocarvone over gold catalysts 

Compared to Au/TiO2 catalyst there was both hydrogenation of all reducible 

functional groups as well as deoximation in the presence of Pt catalysts, with 

activation of isopropyl fragment being preferred. Gold catalysts were less active but 

provided selective carvone oxime deoximation to carvone followed by conjugated 

C=C bond hydrogenation leading to dihydrocarvone.  
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Linear alkylbenzene sulfonates are the main biodegradable component of the 

production of synthetic detergents obtained by sulfonation of linear alkylbenzene 

(LAB). The process of producing alkylbenzenesulfonic acid (ASA) consists of the 

following stages: dehydrogenation of linear alkanes C9 - C14; hydrogenation of di- 

and triolefins to monoolefins; alkylation of benzene with olefinic hydrocarbons; 

sulfonation of linear alkylbenzenes with sulfuric anhydride in a film reactor to obtain 

ASA. 

In gas-liquid processes of chemical technology, reactors of various designs are 

used, which do not always provide the required product quality. The low speed of gas 

transport in the liquid phase, as well as the high gas flow rates in bubble reactors 

complicate the technology. 

In this regard, the urgent task is to develop the effective reactors that provide a 

high speed of gas transport to the liquid. The most promising are film-type reactors, 

since the film-like flow of a liquid makes it possible to increase (several times) the 

mass transfer coefficients in the liquid phase in comparison with the bubbling regime. 

Artificially created turbulence can increase the intensity of heat and mass transfer of 

the liquid and gas phases in the film reactor. However, the industrial implementation 

of film-type reactors is largely constrained by the lack of experimental data to develop 

a scientifically based methodology for their calculation and design. 

In the process of LAB sulfonation with sulfuric anhydride in a film reactor, the 

process is complicated by occurrence of side reactions, the products of which are 

viscous substances - tetralins and sulfones. The accumulation of viscous 

components leads to clogging of the reactor tubes, so that the hydrodynamic regime 

of the film flow is violated and the yield of the target product is reduced. Upon 

reaching a critical concentration of highly viscous components in the reactor, it is 

flushed with water, which allows the removal of viscous compounds. 



PP-14 

300 

The purpose of the work is to determine the optimal design and technological 

mode and mathematical modeling method. 

The main disadvantage of a single-tube film reactor is a short period between the 

reactor washings, which leads to the need to replace it with a multi-tube film 

apparatus. Ensuring a satisfactory yield at the maximum possible duration of the 

cycles can be achieved by optimizing the design parameters of the reactor using the 

method of mathematical modeling: 

Pyrosulfonic 
acis LAB ASA ASA 

anhydride

Unsulfonated matter

Unsaturated 
LAB

k1

+SO3

k5 k6

+H2O

k3

+SO3

k7

k5

k2k-2 k2k-2

 

As a result of the calculations using a mathematical model that adequately 

describes the process, the dependence of the concentration of ABSK and the 

viscous component in the output stream is obtained. 

An analysis via mathematical modeling was performed of the influence of the 

design of a film reactor for LAB sulfonation on the rate of tetralins and sulfones 

formation of. The optimal design of the sulfonation reactor with the number of tubes n 

= 40 and diameter d = 43 mm was determined. It was shown that with a change in 

the LAB flow rate in the reactor tube, the mass transfer coefficient increases. So, at a 

LAB volume flow rate per tube V = 0.95 · 10–5 m3/s, the mass transfer coefficient is 

1.73 · 10–2, and at V = 2.86 · 10–5 the coefficient is 2.08 · 10–2. 
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Nowadays the supply of main chemical synthesis and the transport sector of the 

economy is based on hydrocarbons extracted from oil. The forecast of the 

international energy agency [1] for the next 25 years includes an increase in 

hydrocarbon consumption by 25-30 %, with a decrease in extraction by 10-15 %. 

Consequently, significant changes and revisions of the raw materials base for 

hydrocarbon production processes are necessary for the possible replacement of 

traditional methods for producing hydrocarbons from raw oil. Biomass and waste is 

the only renewable alternative to fossil sources of hydrocarbons and energy in 

chemical synthesis and the transport sector of the economy. The production of liquid 

hydrocarbons from biomass and waste through synthesis gas is considered as a 

promising process in the short and medium term, either by Fischer-Tropsch 

synthesis, or by means of the catalytic transformation of methanol into hydrocarbons 

[2, 3]. 

Samples of an iron-modified commercial zeolite H-ZSM-5 were synthesized by 

modification of H-ZSM-5 in a solution of Iron chloride(III), the samples were 

designated ZSM-5-FeCl3-0.001M, ZSM-5-FeCl3-0.005M, ZSM-5-FeCl3-0.01M,  

ZSM-5-FeCl3-0.05M, ZSM-5-FeCl3-0.1M, ZSM-5-FeCl3-0.5M. Catalysts testing were 

provided in tube reactor filled with investigated catalysts, the reactor was heated to 

350 °C the DME low rate was maintained as 0.16 kg(DME)/(kg(Cat)*h). The reaction 

samples were analyzed by online chromatography. 

The introduction of iron into the zeolite H-ZSM-5 matrix reduces the number of 

micropores from 303 to 190 m2/g, while the surface area of mesopores increases 

slightly from 55 to 106 m2/g with increasing of iron concentration from 0.004 % to 

0.032 % and with further increase of concentration to 0.24 % decreases to 45 m2/g. 

Modification of zeolite H-ZSM-5 with iron chloride, results in increase of dimethyl 

ether for 25-30 %. The increase in the conversion of dimethyl ether and the rate of its 
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transformation with iron modification can be associated with modification of active 

sites. 
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Figure 1. Dimethyl ether transformation rate versus а) time, b) specific transformed dimethyl ether 

quantity for H-ZSM-5 samples modified with iron chloride, (W(CH3OCH3) = 0.16 kg(Me)/(kg(Cat)*h), 
t = 350 °C, p = 1.1 atm) 

A series of iron modified H-ZSM-5 zeolites were synthesized by ion exchange 

methods. The sample containing 0.007 wt. % of iron showed higher activity compare 

to initial sample 
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FOAMS FOR CYCLOHEXENE AND BENZYL ALCOHOL OXIDATION 
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Despite numerous literature reports regarding the synthesis and application of 

metal organic frameworks (MOF) in catalytic processes, there are many problems 

regarding their chemical and mechanical stability as well as their post-modification to 

conform high industrial standards such as activity and selectivity. Starting from early 

90’s, more than 70 000 MOF structures have been reported, showing the unique 

chemical and catalytical properties. Despite the potential use of these materials in 

catalytic processes, e.g. oxidation or hydrogenation, the lack of thermal or chemical 

stability might be problematic to their industrial use. Another problem relates to their 

shaping into desired structures to allow sufficient heat and mass transport properties 

[1].  

In this study we present detailed study on preparation and characterisation of  

Cu-HKUST, CuCo-HKUST, CuPd-HKUST metal organic frameworks deposited on 

ceramic foams. The catalysts were characterized by various methods including,  

in situ DRIFT, XRD and BET. The synthesized catalysts have proven good 

mechanical and chemical resistance and the ability to uniform deposition on 

structured supports. The catalytic results on cyclohexene and benzyl alcohol 

oxidation showed that prepared structured catalysts may be successfully used in 

organic synthesis. 
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In the phosphate industry, phosphate ore is often mined from open-pit mines and 

then beneficiated in a series of flotation units. The ore thus upgraded is then sent to a 

(wet) phosphoric acid process to produce phosphoric acid which is the key 

component of the phosphate industry where it is used in the production of fertilizers, 

in the food industry and even in the pharmaceutical industry [1]. The manufacturing 

process which is widely used in the phosphate industry consists mainly of a digestion 

tank, a filtration unit, and a concentration unit. However, despite its wide use, its 

functioning still poses several problems due the lack of knowledge on many complex 

phenomena involved in the process. The understanding of these phenomena as well 

as accurate experimental measurements of the relevant variables are some of the 

key issues that should be addressed to optimally design and operate the phosphoric 

acid processes.  

The leaching process takes place in the digestion tank and consists in reacting 

the phosphate ore particles of different sizes with a mixture of concentrated sulfuric 

acid and recycled phosphoric acid to produce phosphoric acid and gypsum. The 

digestion tank which is the heart of the process is therefore critical to the 

performance of the downstream units, i.e., filtration and concentration units. The 

control of its operation is therefore of utmost importance for the entire phosphoric 

acid process.  

The objective of this contribution is to analyze the effect of the particle size 

distribution (PSD) on the leaching process by developing a first-principle model for 

mono-sized particles first, and then incorporating a PSD to take into account the 

actual operating conditions in the digestion tank.  

The leaching is considered as a set of non-catalytic fluid/solid chemical reactions 

with consumption of the solid. Its modelling is therefore based on the approach of 
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shrinking core model with elimination of the products. Furthermore, the model 

involves several phenomena including mass transfer and transport of reagents 

(products) to (from) the particle surface, and reactions at the surface of the solid. The 

model equations describe the mass balances within the liquid bulk, the liquid film 

surrounding the particles, and the particles, and involve several unknown 

parameters. A global estimability analysis is then carried out to determine the 

parameters which are estimable from the available measurements. The most 

estimable parameters are then identified from the measurements of the phosphate 

ore conversion rate for uniform particles, and then for particles with a size distribution 

in order to match reality [2]. The effect of the type of PSD is evaluated by using 

different distributions (Rosin–Rammler, Gamma, Gaudin–Schuhmann and Log-

normal distributions) and a variation coefficient is used to quantify the influence of its 

shape on the leaching model predictions [3]. 

For different operating conditions of the leaching process, the predicted results 

using the identified parameters of the model with incorporated PSD are more 

consistent with the experimental data and consequently allowed us to significantly 

improve the understanding of the phenomena involved in the digestion. 
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Carbon nanoparticles (CNs) have recently become the subject of research but 

due to the uniqueness of the already studied properties of CNs they are widely used. 

They are used in the production of universal adsorbents and filters [1] and as carriers 

for catalysts [2] and as fillers for polymer and inorganic matrices [3]. CNs are the 

main components of biocompatible materials. CNs are also considered for use in 

enhanced oil recovery technologies [4]. The variety of physicochemical properties of 

carbon materials of the new generation – fullerenes, nanotubes, bulbous structures 

and ultradispersed diamonds – opens up the prospects for using CNs in different 

allotropic forms in existing technologies and in the development of new ones. 

The disadvantages of the existing technologies for the synthesis of CNs are their 

high cost and non-ecological compatibility. Already obtained products, as a rule, 

require further technological processing using "wet" chemistry consisting of various 

acids and organic solvents or the use of heat treatment for purification from 

accompanying impurities. High price and low yield of CNs complicate their 

widespread use. The industrial methods of producing soot particles using combustion 

reactors result in significant greenhouse gas emissions. The redox methods generate 

large amounts of liquid waste [2]. 

We present an effective method for the synthesis of CNs by pyrolysis in a cyclic 

chemical compression reactor [5]. The technique allows the use of various carbon-

containing precursors in the gaseous and liquid phases. The reactions take place in 

adiabatic compression-rarefaction cycles with a controlled frequency in an 

atmosphere of various buffer gases with a controlled concentration. It is possible to 

influence the course of reactions by changing the pressure and using catalysts. All 

these factors make it possible to produce CNs with a varied composition and 

morphology. In this paper we present the results of experiments on the production of 

CNs with argon and helium as buffer gases. In a number of experiments dopants 

were used. In the case of using argon as a buffer gas CNs were obtained close to 
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bulbous with a highly developed specific surface which were globular carbon 

particles and structures with and without an inner cavity. The use of helium in a 

mixture for the pyrolysis of hydrocarbons leads to the formation of onion structures at 

high pressures and scaly structures at low pressures. A further decrease in pressure 

leads to the formation of finely dispersed amorphous carbon with a gradual increase 

in its fraction in the product. 

Various light hydrocarbons were used as precursors – acetylene, ethylene, 

pentane, a mixture of pentane and butane, etc. The progress of the hydrocarbon 

pyrolysis reaction was monitored on-line using a UGA-200 universal gas analyzer. 

The CNs are characterized by high-resolution transmission electron (TEM) and 

scanning electron (SEM) microscopy and X-ray diffraction analysis and Raman 

spectroscopy and EDS-spectrometry. 

The buffer gas used in the synthesis process and the pressure inside the reactor 

volume affects the morphological characteristics of the products. Changing the 

conditions of gas-phase synthesis allows customizing the process to obtain a specific 

product. The resulting product in the process of synthesis is chemically pure. Its 

impurity is determined only by the degree of purification of the initial reagents. The 

technological process do not introduce additional impurities into the product. The 

resulting product does not require further processing, unlike most of the proposed 

methods, and it is ready for use in technologies and problems of materials science. 
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Sewage sludge from urban wastewater treatment plants is a diluted suspension 

of microorganisms and their metabolic products, harmful organic substances and 

mineral components in water (up to 99 % of water). The composition of sewage 

sludge includes substances with toxic, cancerogenic and other negative properties. 

Due to the high humidity, the initial sludge requires mechanical drying up to 73-84 % 

of humidity to facilitate transportation, logistics and storage. An increase in the 

volume of sewage sludge from treatment plants is becoming a serious worldwide 

environmental problem [1]. 

Due to the presence of organic substances in the composition, sludge is a 

valuable energy raw material that can be used to produce heat or fuel (synthesis gas, 

bio-fuel). Such methods of sludge processing include hydrothermal oxidation, 

combustion, pyrolysis and gasification. The combustion is an industrial method of 

sludge utilization and carried out in a fluidized bed of an inert material at more than 

850 °C. Under such conditions, mechanically dried sludge cannot be combusted in 

autothermal mode, which requires either an additional drying step or the supply of 

additional fuel [2]. 

One of the effective ways to obtain energy from fossil raw materials is the 

technology of its catalytic combustion in a fluidized bed. Catalytic combustion is 

fundamentally different from the traditional combustion processes, since organic 

substances and CO are oxidized on the surface of a heterogeneous catalyst without 

the formation of a flame. Using the technology of fuel combustion in a fluidized bed of 

catalyst allows one to achieve the following advantages: significantly reduce the 

temperature of the process to 700-750 °C due to an increase in the rate of oxidation 

reactions; reduce the requirements for thermochemical properties of structural 

materials; to achieve high values of calorific intensity inside the combustion zone, 

which can significantly reduce the dimensions, weight and metal consumption of 

structures; significantly reduce the concentration of harmful substances in flue gases 

[3]. 
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This work presents the results of simulation of a sewage sludge combustion plant 

with a productivity of 6 tones per hour using an ASPEN Plus®. It is shown that 

catalytic combustion technology can be used for the efficient utilization of 

mechanically dehydrated sludge with a humidity of ~ 75 % in autothermal mode 

(without the use of additional fuel). At the same time, the plant for utilization of 6.0 

tons of sludge per hour allows one to obtain 3.07 MW of heat energy. It is shown that 

the sludge humidity and its calorific value significantly affect the combustion process. 

Thus, at a humidity of less than 72 %, an additional water supply is necessary to 

avoid overheating of the catalyst bed. In the case of an increase in sludge humidity of 

more than 76 %, an additional supply of fuel (for example, brown coal) is required. In 

addition, the article discusses the emissions of harmful substances generated during 

sewage sludge combustion and methods for their utilization. 
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The transport of oxygen through oxygen-permeable membranes or 

electrochemical devices, such as solid oxide fuel cells (SOFC), is controlled by inner 

volume properties, such as the energy of diffusion activation barriers, and surface 

processes – adsorption, desorption of oxygen molecules and their dissociation into 

oxygen ions. At typical SOFC operating temperatures (700-900 °C), surface 

processes play a limiting role in oxygen exchange, and understanding this stage is 

critical for determining the performance of such devices, and is also important for a 

fundamental understanding of the process as a whole. Advances in quantum 

chemical calculation methods using DFT approaches allow us to investigate the 

quantitative characteristics of these processes by computer modeling.  

An effective approach for creating new functional materials for SOFC and 

membranes is modification by doping with highly charged cations, for example, 

replacing Co or Fe with Mo. This modification allows to solve a number of important 

problems-to increase the stability of the material in the atmosphere of CO2, 

suppresses unwanted phase transitions. But these materials are new and their 

properties are unknown in details and are in focus of scientific interest now - in 

particular one need to understand details of surface oxygen exchange processes too. 

We perform calculations of the oxygen O2 molecule properties on (100) surface of 

SrFe1–yMoyO3–x and SrCo1–yMoyFe3–x using VASP DFT code. The role of oxygen 

vacancies on the surface of oxide in O2 molecule neighbor was analyzed. Energy and 

electronic processes for cobalt and iron-containing oxides are compared. 
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Biogas is a valuable alternative fuel that can be used to produce heat and 

electricity in biogas engines or cogeneration units. However, turbines powered by this 

fuel are specific type of the combustors which places them somewhere between 

conventional industrial boilers and natural gas combustors. Depending on the initial 

biogas substrates used, the biogas composition varies in main components: CH4 (50-

75 %), CO2 (25-45 %), H2O (2-7 %), N2 (< 2 vol %), O2 (< 2 vol %), H2 (< 1 vol %) 

and H2S (20 – 20,000 ppm) [1,2]. The complex gas composition, relatively high NOx 

concentrations, high oxygen content and elevated temperatures requires unique 

catalysts that will conform high activity and selectivity requirements. Therefore, there 

is an urgent need to develop the highly efficient catalytic system to control the 

emission from biogas fueled engines. Because the concentration of unburned 

methane in the exhaust gases is too high from an environmental point of view, 

therefore we present the results of our work on CoPd/Al2O3 catalyst for methane 

oxidation processes. The catalyst was prepared by sonication method and supported 

on metallic gauzes, that revels high activity in a wide temperature and flow ranges. 

Two different exhaust composition mixture were tested: composition I – simulates dry 

exhaust gas composition without ammonia and unburned methane in 0.40 vol % to 

simulate biogas engine start-up or shut-down, and composition II – simulates the dry 

reacting mixture containing both unreacted methane and real gas mixture at the end 

of biogas engine. The obtained results for methane catalytic conversion (composition 

I) represent classical light of curves. The T50% for the 1 dm3/min is achieved for ca. 

250C and moves to the higher temperatures with the increasing of the gas exhaust 

flowrates. The almost complete conversion is achieved for all considered flowrates at 

500 °C. As the reaction mixture becomes more complex (composition II), the T50% 

moves towards the higher temperatures ca. 300 °C for flowrates 2-6 dm3/min. The 
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conversion at 500 °C varies between 90 % and 100 %, with the lowest catalytic 

activity for the shortest resident time. 
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Nitric acid is one of the most produced commodities worldwide. It is mainly used 

as a strategical chemical for the synthesis of fertilizers and in 2013 the production 

reached 78 million tons [1,2]. In recent years, the higher awareness in the 

greenhouse effect and in the environmental pollution, have highlighted the 

importance of a new development in the nitric acid tail gas treatment, especially 

concerning the N2O and NOx species [1]. Many metal oxide and zeolite catalysts 

have been developed for N2O and NOx abatement, each one with benefits and 

drawbacks. The state-of-the-art materials are based on Fe-zeolites which both show 

NOx and N2O abatement with the same catalyst. Many Fe-zeolites have been 

explored, such as Ferrierite (FER), ZSM5 and BEA [3]. In this paper, the comparison 

of fresh and laboratory aged Fe-FER and Fe-ZSM5 industrial catalysts, both supplied 

by ALSYS, was carried out. Fe-FER catalyst is a proprietary catalyst of CASALE and 

ALSYS and it is used in nitric acid plants [4]. The results from field and laboratory 

showed that Fe-FER will allow customers to benefit from a higher catalytic activity 

and greater stability compare to the current commercial solution with Fe-ZSM5.  

Fe-FER and Fe-ZSM5 extruded catalysts were subjected to a simulated aging 

procedure to investigate the catalytic behavior under stressed condition. The 

catalysts showed a uniform cylindrical shape with a diameter close to 2 mm (with 

typical composition and shape of industrial catalyst). The catalytic tests were 

performed under relevant industrial deN2O and deNOx reaction conditions. The aging 

treatment lasted for 150 h at two temperatures (600 and 700 °C) with 12 % of O2 and 

6 % of H2O. 
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With the spread of mini/micro reactors in industrial applications, operational and 

geometrical parameters that govern the mixing mechanism in fast mixers have 

attracted many researches both by CFD modelling and experimental techniques. 

While the effect of the operational parameters on the flow field and the mixing 

mechanism in Confined Impinging Jets and T-Jets mixers have been studied 

extensively, hydrodynamics and mixing mechanism in mixers, made of a chamber 

connected by two or more tangential opposed jets, a.k.a. Vortex mixers, have not 

been assesed fully. These mixers, by design, offer a swirling vortex pattern near the 

jets [1] and because there is no impingement zone, establisment of equal momentum 

of jets is not necassary [2]. The effect of the operational parameters in terms of 

Reynolds numbers of the jets, on the hydrodynamics have been assesed for the 

mixing of methane/methane and methane/nitrogen gases using a vortex mixer of 10 

mm diameter with two of 5mm feeding jets. The Reynolds numbers of the jets are 

covered for laminar and turbulent flows to identify the critical Reynolds number at 

which the flow regime changes. Flow dynamics were assessed by Smoke tracer 

using PIV system as well as 3D CFD. 
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The overall rate of many industrially important catalytic reactions depends not 

only on reaction kinetics but also on the rate of mass and heat transfer from the bulk 

phase to the outer surface of the catalyst pellet and the rate of mass and heat 

diffusion in the pellet. Depending on the pellet morphology and kinetic, process and 

transport parameters, the reaction behavior in the pellet can be complex, including 

the formation of a so-called dead zone where no reaction takes place [1-3]. The 

numerical solution of the corresponding two-point boundary-value problems is a time-

consuming and sometimes even challenging task. Thus, approximate solutions are 

desirable as they can be easily implemented in the overall reactor model.  

The primary aim of the present study is to derive the approximate solutions to the 

non-isothermal reaction-diffusion problems in the catalytic pellets for the case of 

arbitrary reaction kinetics, taking into account the presence of external mass and 

heat transfer resistances. The Taylor series expansion was successfully applied to 

solve reaction-diffusion problems with power-law kinetics [3]. In the present paper, 

we extend our approach to problems with arbitrary kinetics. Our analysis is justified 

by comparing approximate results with analytical and numerical ones for problems 

with and without dead-core solutions. The results confirmed that Taylor series 

expansion at x=1 is more precise than the one at x=0 for large values of Thiele 

modulus, as illustrated in Fig. 1. Moreover, even the six-term Taylor series expansion 

at x=1 is precise enough for engineering calculations as confirmed by comparison 

with exact analytical results.  
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CATALYTIC PERFORMANCE OF NICKEL SUPPORTED ON  
La-HEXAALUMINATE HIBONITE TYPE SYNTHESIZED FROM 

ALUMINUM SALINE SLAGS IN THE DRY REFORMING OF METHANE 

Torrez-Herrera J.J., Korili S.A., Gil A. 

INAMAT-Departamento de Ciencias, Edificio de los Acebos,  
Universidad Pública de Navarra, Campus de Arrosadía E-31006 Pamplona, Spain, 

E-mail: andoni@unavarra.es 

In recent years, there has been a disproportionate increase in the concentrations 

of greenhouse gases (GHG) present in the atmosphere. CH4 and CO2 are the gases 

that have the most contribution to the greenhouse effect. Dry methane reforming 

(DRM), offers an alternative to reduce the impact of these gases, since it uses them 

as a raw material for the production of synthesis gas (H2 and CO). 

The catalysts based on hexaaluminates are of great interest in catalytic reactions 

at high temperature due to their prominent thermal stability and resistance to 

sintering. In this work the synthesis of NiLa-hexaaluminates from the aluminum 

extracted from a saline slag waste [1-3] is presented and the materials used as 

catalysts for the dry methane reforming. Briefly, a refluxing 2 mol/dm3 solution of HCl 

is used to extract the aluminum, giving 8.9 gAl/dm3 along with other metals as Fe, Ca 

and Mg, in lower concentrations. The aluminum solution is used to synthesize 

hexaaluminates by mixing with a stoichiometric amount of lanthanum nitrate and four 

methods of preparation are considered to obtain materials with differences in the 

textural properties. The nickel catalysts (10 wt.%) are prepared by wet impregnation 

of the supports previously calcined at 1273 K. 

The solids were characterized by chemical analysis, adsorption of N2 at –196 °C, 

TPR, SEM/EDX, and XRD. 

The dry methane reforming reaction was carried out on an automated bench-

scale catalytic unit, model Microactivity Reference from PID Eng&Tech, at 700 °C. 

The reactor was a tubular, fixed-bed, downflow one with an internal diameter of 

0.9 cm. Catalyst samples (25 mg) were mixed with inert material in order to dilute the 

catalyst bed and avoid hot spot formation. The reactant mixture consisted of CH4 and 

CO2 with a molar ratio of 1:1, with helium as the balance gas up to a total feed flow of 

50 cm3/min., thus achieving a gas space velocity of 1.2·104 cm3/g·h. Before reaction, 

the catalyst was reduced at 700 °C for 2 h. The reactant and the product streams 

were analyzed using an Agilent 6890 gas chromatograph system. 
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The XRD characterization results for the catalysts are presented in Figure 1 (left), 

where the hexaaluminate phases can be observed indicating that it is possible to 

obtain this oxide from an industrial waste. The catalytic performance and stability of 

the synthesized catalysts are also summarized in Figure 1 (right). The catalyst with a 

higher specific surface also shows greater stability with the reaction time. 

 
Figure 1. (Left) XRD patterns of the NiLa-hexaaluminate catalysts synthesized from aluminum 

extracted saline slags. Symbols:  Spinel pattern 00-021-1152,  Hibonite pattern 00-007-0785. 
(Right) Catalytic performance and stability of the synthesized catalysts,  

A) H2/CO selectivity, B) CO2 conversion, C) CH4 conversion 
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OPTIMUM CONTROL OF GASOLINE CATALYTIC REFORMING 
BASED ON OF KINETIC MODEL  

Gubaydullin I.M.1, Koledina K.F.1, Zaynullin R.Z.2, Koledin S.N.2 

1Institute of Petrochemistry and Catalysis RAS,  
Ufa State Petroleum Technological University, koledinakamila@mail.ru 

2Ufa State Petroleum Technological University 

To start new catalytic processes in industry and intensification of existing 

production, it is necessary a detailed study of the laws of chemical reactions, which is 

fully reflected in the kinetic model of the reaction. The development of a kinetic model 

is the basis for the subsequent decision of problems of optimum control study 

catalytic processes. 

When considering the catalytic processes taking place in multistage reactors, the 

optimal control methodology is used. Catalytic processes in multistage reactors or a 

cascade of reactors, with a series connection of the inputs and outputs of devices 

located one after another, are called multi-stage. In such reactor units y0 – reactant 

concentration at the input to reactor stage; yN – concentration at the exit from it. The 

reaction mixture at the exit of one apparatus is the input to the next apparatus. Real 

catalytic processes are described by phase variables yi and control action vectors uj. 

In fig. 1. presents the management of a multi-stage catalytic process. 

 
Fig. 1. Control of a multi-stage catalytic process 

The paper considers the optimal control of catalytic reforming of gasoline based 

on the kinetic model [1-3]. The reactor block of the catalytic reforming process 

consists of three adiabatic reactors, each of which receives a mixture heated to the 

required temperature. Therefore, the conditions for the control: the temperature at the 

input to the reactor T0
j, j = 1,…3. 

For a complex industrial process of catalytic reforming of gasoline, the following 

optimality criteria are characteristic: 1) increase in the octane number of the 

reformate (the octane number by the research method – ONRM); 2) the indicator of 

the yield of the target product (the share of the product minus cracking gases);  

3) restriction of volume fractions of benzene and the amount of aromatic 

hydrocarbons in the composition of marketable gasolines, in accordance with 

environmental requirements for Euro-5 grade brands. 

yN-1 yN 

uN 

Reactor N 
y1 

y2 … y0 

u1 

Reactor 1 

u2 
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A decrease in the content of aromatic hydrocarbons and benzene will lead to a 

decrease in the octane number of the reformate. Therefore, criteria 1) and 3) are 

contradictory. Then the optimal control problem is a multi-criteria optimization 

problem. The solution of the multicriteria optimization problem was carried out by the 

NSGA-II Pareto approximation algorithm [4]. 

  
Fig. 2. Approximation of the Pareto front MCO-problems of catalytic reforming of gasoline 

The non-improved combinations of the benzene content, ONRM, and reformate 

yield presented in the graphs of Fig. 2 – the boundary of the range of possible 

combinations of objective functions (Pareto front). The physical meaning of each 

point is as follows: at the current ONRM, the minimum possible benzene content 

(Fig. 2a) and the maximum reformate yield (Fig. 2b); at the current benzene content, 

the maximum possible ONRM and reformate yield; and at the current value of the 

reformate yield, the minimum benzene content with a possible maximum of ONRM. 

For each value Fig. 2 the optimal control is calculated – the temperature at the input 

to three rectors.  

As a result, a regime was determined under which a reduction in the content of 

the amount of benzene from 4 to 3 % of the mass with a loss of ONRM by 1 point 

and an increase in the yield of reformate by 1.5 % of the mass is achieved. 
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Manganese pincer transition metal complexes have shown great potential for 

enabling this conversion, with 34 % yield for ethanol to n-butanol and with good 

selectivity.[3] Manganese as metal atom could be an ideal candidate for catalyzing 

this conversion because of its economic and environmental friendliness. With further 

optimization of this manganese-based catalyzed reaction, a batch-to-conti transition 

is to be carried out in a continuous plug flow reactor for an economic feasibility study. 

Furthermore, an investigation of a suitable reactor design calculated with reactor 

design programs should find an applicable reactor for this complex one-pot multi-

step-reaction to reduce the mentioned issues the Guerbet reaction has with ethanol 

(low conversion rates and bad selectivities).  
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REVIEW OF KINETIC MODELS OF OXIDATIVE COUPLING OF 
METHANE AND METHANE DEHYDROAROMATIZATION 

Muhammad Umar Jamil, Ma’moun Al-Rawashdeh* 

Department of Chemical Engineering, Texas A&M University at Qatar,  
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This work compiles, reviews and highlights the pitfalls of reported kinetics models 

in the open literature related to two promising direct methane conversion to 

chemicals processes – oxidative coupling of methane (OCM) and methane 

dehydroaromatization (MDA) reactions. Both are highly attractive and promising 

reactions to produce C2+ and C6+ compounds, respectively, in a direct step that 

simplifies the production process, makes it more energy-efficient, and reduces its 

CO2 emissions. However, both reaction routes are not yet commercial due to various 

technical challenges related to strict heat management as in OCM, very fast catalyst 

deactivation as in MDA, and high energy requirements overall [1]. Mathematical 

modeling across the scales from micro to macro is essential to overcome these 

technical challenges. Both reactions are catalytic, have complex reaction schemes 

with many intermediate components in the gas phase and at the catalytic surface, 

and require special considerations to obtain reliable kinetic experimental data [2]. 

Several studies have been reported in the literature to develop kinetic models for 

these reactions [3]. This work aims to review all of these studies and highlight pitfalls 

in the formulation and reporting of these kinetic models. The selection to study these 

specific reactions is part of an ongoing project that aims to find the potential for 

synergetic effects by combining both chemistries to overcome the earlier mentioned 

technical challenges. 

First, a list was compiled for all kinetic models of these two reactions. They were 

then classified based on the catalyst used, validity ranges of the operating conditions, 

components and reactions, formulation basis, type of experimental validation, 

number of kinetic experimental data, type of experimental setup and number of 

citations of the kinetic model. Further, a tree diagram was built for a few kinetic 

models to present how the kinetic model is improved and utilized in various other 

studies. 

Table 1 shows an overview summary of all the kinetic models for both reactions 

as collected in this work. All kinds of kinetic models have been reported, from simple 
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POTENTIAL OF MONOLITHIC MEMBRANE PORE-THROUGH-FLOW 
BIOREACTORS FOR THE PRODUCTION OF  

GALACTO-OLIGOSACCHARIDES 

Pottratz I.1, Müller I.1, Seidel-Morgenstern A.2, Hamel C.1,2 

1Anhalt University of Applied Sciences, Köthen, Deutschland 
2Otto von Guericke University, Magdeburg, Deutschland 

Introduction 

Immobilized enzymes are widely used in biocatalysis and bioprocess technology. 

The advantages of immobilized enzymes instead of enzyme solutions are the 

increasing stability, the opportunity to operate in a continuous system and the 

sustainability with respect to consumption of cost intensive enzymes. In any case the 

type of support is crucial for immobilization efficiency and substrate mass transfer [1]. 

Methacrylate based monolithic macro porous carriers with suitable hydrodynamic 

properties can be used as Convective Interaction Media (CIM®). These monoliths are 

characterized by high mechanical and chemical stability as well as efficient mass 

transfer by convective pore flow through the pores. The convective transport of the 

molecules in the monolithic pore structure to the active centers dominates and there 

are no diffusion limitations [2]. To reduce protein surface interactions and maintain a 

stable linkage with the support, the immobilization technique must be well selected. 

To prevent an activity loss of the immobilized enzyme it is crucial that the functional 

groups involved in the linkage with the support are not situated on active sites of the 

protein [3].  

The main goal of this study is to demonstrate the potential of carboxydiimidazol 

(CDI) activated pore-through-flow monolith as support for a covalent immobilized  

-galactosidase to catalyze the synthesis of galacto-oligosacchachides (GOS) from 

lactose (Fig. 1A). To evaluate the potential in a broad parameter range, the 

conventional batch reactor experiments serve as a reference to compare with the 

membrane bioreactor. Furthermore, different reactor configurations were studied by 

simulations based on a pore-through-flow membrane reactor model and suitable 

reaction kinetics [4-5]. 

GOS synthesis in a CIM® CDI monolithic enzyme reactor 

GOS are classified as prebiotics, defined as non-digestible food ingredients which 

stimulate beneficial colon bacteria. There is a great interest in the application of GOS 

as health-promoting food supplements [5-6]. In screening experiments the monolithic 
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BIOGAS CONVERSION TO SYNGAS IN AN ENLARGED 
LABORATORY PILOT TUBULAR REACTOR 

Itkulova S.S.1,2, Boleubayev Y.A.1,3, Valishevskiy K.A.1, Tilekkabyl A.S.1,2 

1D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry,  
Almaty, Kazakhstan, s.itkulova@ifce.kz 

2Kazakh-British Technical University, Almaty, Kazakhstan 
3Satbayev University, Almaty, Kazakhstan 

The increasing energy demand and need to reduce greenhouse gas (GHG) 

emissions over the last decades have become the two most serious challenges of 

the modern era. Biogas is one of the renewable sources that could be used for the 

production of syngas and hydrogen via syngas. Hydrogen is the most promising 

energy carrier, while syngas is a building block for producing a wide number of 

petrochemicals. Among the existing biogas utilization technologies, dry reforming can 

convert two major greenhouse gases in biogas – methane and carbon dioxide into 

syngas (mix of hydrogen and carbon monoxide).  

In our previous work [1] the high-effective multicomponent Co-based catalysts for 

hydrogen-enriched syngas production dry and steam conversion of model biogas 

were developed and tested at laboratory scale using a quartz flow reactor with a 

volume of 20-100 ml. In application works, the completion of a laboratory stage of 

studying is followed by a scale-up of the process, which implies a gradual 

enlargement of a set accompanied with increasing the target product production [2]. 

To provide the enlarged scale of the catalyst testing and optimization of the process 

parameters, a laboratory reactor was designed to meet the following requirements: 

 resistance to the corrosive environment under high temperatures (steam and 

carbon dioxide, which are the main components of feedstock);  

 operation in a broad range of temperatures varied within 50-1000 °C;  

 operation under pressures varied within 1-30 atm (despite the fact that the 

optimal pressure for methane reforming is an atmospheric one, higher pressures are 

necessary for the following synthesis gas conversion);  

 reactor type with a fixed bed of catalyst is a tubular one, which is characterized 

by simplicity of construction and operation;  

 low cost of the reactor and its repair. Drawings of the reactor and its parts 

were made using AutoCAD-2016 software corresponding to CAD systems 

(computer-aided design).  
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To make a flow tubular reactor the Inconel 600 alloy, which is the nickel-chrome 

alloy developed purposely for systems requiring high resistance to corrosion under 

high temperatures, was chosen. The tube of Inconel with an inner diameter of 

20 mm, the wall thickness of 10 mm, and a tube length of 900 mm that corresponded 

to the inner reactor volume is 300 ml was used. The impossibility of welding of 

Inconel items caused the need to use two types of 4-bolt flanges – captive flange and 

split flange made of stainless steel. The thermocouple was placed in a special 

thermo- and corrosion stable cover and inserted from the top of the reactor through 

the fitting. 

The reactor was connected with other standard parts of a set including gas flow 

meters, temperature and pressure regulation and control units, water pump, cooler, 

and separator.  

The test of the catalyst in the designed reactor showed acceptable convergence 

and confirmed high stability of the Co-based catalyst in the production of syngas from 

model biogas in the temperature range of 700-800 °C, P = 1-2 atm. Under these 

conditions, the extent of conversion of methane was higher than 80% and stable for 

100 hours. The H2/CO ratio in the formed syngas was varied depending on the feed 

composition. 
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WAX ESTER PRODUCTION FROM WASTE FISH OIL 
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1Department of Industrial Engineering, University of Salerno,  
Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy,  maiuliano@unisa.it 

2Institute for Polymers, Composites and Biomaterials,  
National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy 

3Department of Physics “E.R. Caianiello” University of Salerno,  
Via Giovanni Paolo II,132 - 84084 Fisciano (SA), Italy 
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Wax esters are long-chain esters derived from fatty acids and alcohols, both with 

chain lengths of twelve carbons or more [1]. They are non-toxic and biodegradable 

and can be extracted from animal and plant materials such as beeswax, spermaceti 

oil and jojoba oil. They are widely used in lubricant, pharmaceutical, cosmetic and 

plasticizer industries [2]. However, costs and availability of this resources hinder the 

large-scale application of wax ester synthesis. Thus, attempts to synthesize wax 

esters with cheaper raw materials in a shorter time are issues of great significance. In 

this context, the valorization of wastes and biomasses, long treated and minimized to 

reduce environmental impact, is a valid and promising alternative.  

Nowadays the fishing is one of our most important industries which always try 

hard to increase the production. This wealth has led to increased production, 

transformation and preservation of fish industries which generate large amounts of 

waste. During fish processing operations, indeed, a significant amount of fish by-

products is generated in the form of viscera, frame, head, skin scales, etc… [2]. 

Although, some parts of these processes wastes are utilized as low-cost ingredients 

in animal feed production or as fertilizer, the main bulk is looked at as worthless 

garbage and dumped into the river or landfill, creating both disposal and pollution 

problems [2,3]. It has been noticed that most of these wastes, especially the visceral 

mass, contain a high amount of oil in the range 2-35 wt. %, depending on species. In 

fact, many recent studies have been interested in the valorization of fish-waste. The 

one that has received the greatest attention is the synthesis of biofuels. Moreover, 

considering that fish oil possesses several fatty acids with health benefits it can be 

considered wax ester production for cosmetic and pharmaceutical productions. In 

particular, the wax ester synthesis can be carried out by esterification reaction of 
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alcohol and fatty acid, or transesterification of vegetable oils or fats with alcohols in 

the presence of a chemical catalyst. On the other hand, chemical catalyst presents 

several limitations, while a good alternative can be the use of enzymatic catalysis. 

The application of enzymes, in particular lipases, in a large scale process is often 

limited due to their high cost, and sensitivity to high temperature and organic 

solvents. Moreover, it is difficult to separate enzymes from the reaction system, 

which limits its recovery and may lead to contamination of the final product. In order 

to overcome these problems, lipases have been immobilized by several methods. 

Indeed, immobilization of an enzyme can: (i) reduce the operational process cost and 

(ii) enhance the reusability. Immobilized enzymes are often more stable with pH than 

free enzymes [4].  

The aim of this work was to synthesize wax ester from fish oil for use in cosmetic 

and pharmaceutical applications. Particular attention has been devoted to the 

optimization of the preparation of the enzymatic catalyst, which consists of 

hydrophilic hyper-cross-linked resin (NH2-HCL) anchoring the enzyme through 

physical bonds. The immobilization process and catalytic tests were monitored using 

Magnetic Resonance Imaging (MRI). The synthesized wax ester was compared with 

a natural wax and analyzed according to the Standards. 
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probable reactions are hydrocracking: СnH2n+2 + H2 = 2CnHn+1, isomerization  

Н-СnH2n+2 = H-CnH2n+2, polyalkyl aromatics hydrogenization СnН2n-6 + 3Н2 = СnH2n 

and coke formation. 

The new gasoline production optimization method was proposed, implemented 

and introduced into industrial plant as the research result. The method essence is to 

optimize the manufacturing processes of mixture components, such as the 

hydrocracking and catalytic cracking gasoline, reformate, isomerizate, alkylate. 

∙ ∙ ∙ ∙ ∙ / ∙ , / ∙ /

∙ ∙
1
∙ ∆ ∙ 																																																																																															

 

0, 0, 	 , ;	 

Ci(x), kj(x), ks(x
/) – hydrocarbon content and reaction rate constants distribution 

functions; ν(x,x/) – probability distribution functions of the alkanes bond breaking in 

hydrocracking; V – catalyst load volume, m3; T – the process temperature gradient, 

K; Cp
m – the mixture heat capacity, J/mol·K; ∆Hi – the reaction enthalpy change, 

kJ/mol; x – the carbon atoms number in a hydrocarbon molecule; j – the hydrocarbon 

groups number (alkanes, isoalkanes, cycloalkanes, arenas, resins, coke). The first 

term in the material balance equation describes the reactions in which hydrogen is 

not involved, the second describes the reactions involving hydrogen, the third 

describes the alkanes hydrocracking reactions. 

The fuel compositions optimization, based on data on the hydrocarbons 

composition in mixed flows, physico-chemical properties and the mixture components 

volume, must be carried out taking into account changes in the catalyst activity and 

processed feed hydrocarbon composition. The new method allows to reduce 

commercial gasolines quality margin by regulating the mixed gasoline formulation in 

accordance with the requirements and the feedstock and end product work-order 

quantity. The principle of the proposed method is to perform successive stages of 

calculation and optimization of the mixed components manufacturing processes. 

References 

[1] Chuzlov, V., Nazarova, G., Ivanchina, E., Ivashkina, E. Increasing the economic efficiency of 
gasoline production: Reducing the quality giveaway and simulation of catalytic cracking and 
compounding // Fuel Processing Technology. 2019. Vol. 196. 106139. 

Acknowledgements 

The research was also supported by RSCF grant № 19-71-10015. 



PP-36 

340 

CFD MODELLING OF REACTORS FOR REDUCING 
THE ENVIRONMENTAL IMPACT OF SO2 EMISSIONS 

Jolanta Jaschik1, Marek Tańczyk1, Manfred Jaschik1,  
Daniel Janecki2, Jan Mrozowski3 

1Institute of Chemical Engineering, Polish Academy of Sciences,  
ul. Baltycka 5, 44-100 Gliwice, Poland, jjaschik@iich.gliwice.pl 

2Institute of Environmental Engineering and Biotechnology, University of Opole,  
ul. Kardynała Kominka 6, 6a, 45-032 Opole, Poland 

3Research Network ŁUKASIEWICZ, Institute of Non-Ferrous Metals (IMN),  
ul. Sowińskiego 5, 44-100 Gliwice, Poland 

According to current regulations, the concentration of SO2 in flue gas should not 

exceed 200 mg/m3 (STP). In the case of SO2-rich gases in metallurgical processes 

(>4 vol. % of SO2), an alternative to the production of sulphuric acid may be 

absorption in limestone suspension combined with the production of quality gypsum. 

In the Institute of Non-Ferrous Metals (IMN) in Gliwice a method has been developed 

and verified based on large-scale laboratory experiments. The method focuses on 

deep desulphurisation of the process gas containing up to 10 vol. % of SO2, with the 

process carried out in a bubble reactor equipped with a slot gas disperser. To study 

the large-scale implementation of the process a CFD model of the reactor was 

developed. The present study shows the geometrical representation of the bubble 

reactor in ANSYS Fluent numerical environment, alongside simulation results 

concerning the hydrodynamics of process gas desulphurisation in bubble reactors at 

a laboratory (40 dm3) and large-scale laboratory (1.5 m3) scales. In the simulations 

the following operating parameters were varied: gas load on the paddles of the slot 

disperser, rotation velocity and direction, the flow rate of the oxidizing gas and 

gypsum concentration in the suspension, and the effect of these parameters upon 

suspension velocity and the velocity and compression of the gas phase was 

assessed. Also, a detailed analysis was performed of the hydrodynamic phenomena 

occurring in the various areas of the two reactors. This analysis confirmed the 

principal qualitative and quantitative conclusions resulting from the relevant 

experimental desulphurisation studies in both laboratory and large-scale laboratory 

bubble reactors. 
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SIMULATION THE HYDRODYNAMIC CHARACTERISTICS  
OF AN EBULLATED BED 

Klenov O.P., Noskov A.S. 

Boreskov Institute of Catalysis SB RAS, Pr. Akad. Lavrentieva 5,  
630090 Novosibirsk, Russia, klen@catalysis.ru, noskov@catalysis.ru 

Ebullated-bed reactors are used for hydroprocessing technologies and for the 

deep conversion of oil residues. The packed catalyst bed is fluidized by a bottom-up 

flow of liquid feedstock mixed with a hydrogen-containing gas. Moreover, only part of 

the solid particles occurs in the suspended state. Slight fluidization of the bed makes 

it possible to push apart the catalyst particles in the bed and significantly reduce 

pressure drop on the bed. This makes it possible to more efficiently use 

hydrogenation catalyst by reducing its size [1, 2]. 

The study of the hydrodynamic characteristics of the ebullated bed was carried 

out using CFD simulation. The Euler multiphase approximation was used to study the 

behavior of catalyst particles in a two-phase gas-liquid flow. 

The parameters of the two-phase flow and catalyst particles used in the 

simulation are shown in Table 1. 

Table 1. 

No Parameter Units Range 

1 Liquid density kg/m3 703 

2 Liquid viscosity kg/(m*s) 0,00012 

3 Superficial liquid velocity m/s 0,005--0,13 

4 Superficial gas velocity m/s 0,003 

5 Particle density kg/m3 1814 

6 Volume equivalent diameter mm 0.25--3.0 

7 Pressure Pa 1.038*107 

8 Temperature K 698 

The influence of the velocity of the liquid phase and the particle size of the 

catalyst on the porosity and pressure drop in the ebullated bed is investigated.  

Figure 1 shows the effect of the superficial liquid velocity on the value of the Euler 

number divided by the height H of the ebullated bed. ∆ ,⁄ . W0
gasoil 

is the superficial input velocity of the liquid phase. It is shown that an increase in the 

velocity of the liquid phase leads to a decrease in the Euler number in inverse 

proportion to the square of the velocity of the liquid phase, / 	~	 , .  
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OXYGEN PERMEABILITY OF THE MIEC OXIDES MICROTUBULAR 
MEMBRANES PRODUCED WITH ADDITIVE METHODS 

Ivan Kovalev1,2, Vladislav Sivcev1, Mikhail Popov1, Stanislav Chizhik1, 
Sergey Bychkov1, Alexander Nemudry1 

1Institute of Solid State Chemistry and Mechanochemistry SB RAS,  
Novosibirsk, Russia, E-mail: kovalev.ivan.vyacheslavovich@gmail.com 

2Novosibirsk State Technical University, Novosibirsk, Russia 

Complex oxides with mixed ionic-electronic conductivity (MIEC oxides) attract 

attention by the possibility of their application in the chemical, gas and energy 

industries. They can be used in different technologies, for example, producing pure 

oxygen, methane conversion, electrochemistry processes. Membranes based on 

MIEC oxides allow separating oxygen from the air with 100 % selectivity. The 

integration of such membranes into catalytic reactors will allow combining the stages 

of oxygen separation and partial oxidation of hydrocarbons. 

It is necessary to develop technologies of obtaining gas-tight membranes based 

on MIEC oxides for successful application in catalytic reactors. The most promising 

way is the production of membranes in the form of microtubes, that can significantly 

increase the oxygen permeability. 

Vision of the oxygen transport processes and their dependence on the geometric 

parameters of the membrane are needed to control the functional characteristics of 

the membrane. The lack of standard techniques for the synthesis of microtubular 

membranes leads to an irreproducible microstructure of the final product [1-3]. 

The aim of this work is studying of oxygen permeability of a porous MIEC oxides 

microtubular membrane with a controlled microstructure using 3D printing, phase 

inversion and dip-coating methods for their production.  
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reaction front, which in turn determines the textural and chemical characteristics of 
the catalysts.  

2. Method 
To develop the model, experimentally combustion front was monitored to 

evaluate combustion temperature, wave propagation velocity etc. using an IR 
Camera, along with a digital camcorder. For simplicity, we assumed one dimensional 
geometry and finite length with an exothermic reaction between two reacting solids 
(nitrate/cellulose and glycine) generating another solid (catalyst) and gases being 
evolved during reaction. Differences between the properties of products and 
reactants and their effect on the combustion front are also included in the model. The 
reaction media containing a mixture of two solids is ignited at one end with a specify 
amount of heat flux to start the exothermic reaction. The reaction is represented 
approximately as a non-catalytic reaction with the following stoichiometry:  

A(s) + B(s)  C(s) + ngD(g) (1)  
In addition, the following major assumptions are made to simplify the model:  
 Each individual phase is uniform and homogeneous  
 Conduction in each solid media takes place along with cooling due to heat 

transfer to the environment and evolution of gases. Heat generation occurs due to 
reaction.  

 Thermal and physical properties of each individual phase do not change with 
temperature.  

 Reaction is assumed to be of first order in A and zero order in B.  
 The reaction media is ignited at one end by using a heat flux for a specified 

period of time  
 No mass transfer by diffusion takes place  
 Based on these assumptions, a corresponding energy and mass balance 

equations were developed, and solved by implementing following initial and boundary 
conditions:  

 Initial condition: temperature is uniform everywhere and equal to room 
temperature; concentration of the entire system is equal to the reactant 
concentration.  

 Boundary condition: at the ignition end – heat transfer equals to the applied 
flux; whereas at the other end – heat transfer equals to the convective losses to the 
environment.  

Results and Discussion  

The effect of various parameters such as exothermicity of the reaction system, 
thermal diffusivity differences in reactants and products, amount of gaseous products 
etc. were investigated on the combustion temperature profile, and wave propagation 
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EFFECT OF PARTICLE SIZE ON ADSORPTION OF WATER  
VAPOR ON POROUS ALUMINIUM OXIDE MATERIALS: 

EXPERIMENT AND KINETIC MODELING 

I. Kurzina1, S. Reshetnikov2, E. Meshcheryakov1, A. Livanova1, L. Isupova2 

1Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russian Federation,  
E-mail: kurzina99@mail.ru 

2Boreskov Institute of Catalysis SB RAS, 5 Lavrentieva Avenue, Novosibirsk 630090 
Russian Federation, E-mail: reshet@catalysis.ru 

The study of adsorbents on the basis of low-temperature forms of aluminum 

oxide (-, - and -) obtained by calcination of products of alkaline or acid hydration 

of thermally activated aluminum hydroxide is actual [1]. Aluminium oxide is 

distinguished by its thermodynamic stability, easiest way of obtaining, and availability 

of raw materials, which ensures its wide application along with such adsorbents as 

zeolites and silica gels. 

It is known that the most important factors determining the results of the 

adsorption process are the maximum adsorption capacity of the adsorbent and the 

process speed [2]. The evaluation of the maximum adsorption capacity is necessary 

for determining the volume of the adsorbent that can be fed into the industrial 

adsorber. Usually, adsorption of water from air and various gases is carried out in 

fixed granular layers of adsorbent. However, the saturation with adsorbate of each 

particle of adsorbent in the adsorber depends on the diffusion rate of adsorbate 

molecules inside the granule, which at a certain thermodynamic mode determines 

the intensity of mass transfer [3]. Due to the fact that industrial adsorbate granules 

usually take the form of cylinders and spheres of different sizes, the study of the 

influence of grain size on the adsorption kinetics is of great practical importance. Few 

works reported experimental results on the adsorption kinetics of water vapor on 

activated alumina [4, 5].  

In this paper, an experimental study on adsorption kinetics of water vapors on a 

active aluminium oxide, which was a product of centrifugal thermal activation of 

hydrargillite, was performed. Mathematical modeling of the data obtained for 

adsorbent grains of various sizes was carried out; kinetic parameters were 

determined. To conduct the experiment, the following fractions of this sample were 

taken: 0.25-0.5 mm and 0.5-1.0 mm and a 3.7 x 6 mm granule. The experiments on 

the study of kinetics on the aluminium oxide sample of the mentioned fractions were 
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carried out on an laboratory installation using McBain-Bakr quartz balance by the 

procedure described in [6]. According to the XRD results, the porous material under 

study was a mixture of low-temperature modifications of aluminium oxide - (+)-

Al2O3. The influence of the adsorbent granule size on the adsorption dynamics of 

water vapors on fractions of 0.25-0.5 mm and 0.5-1.0 mm and a 3.7 x 6 mm granule 

was investigated. It was shown that when the fraction size is greater than 0.5-1.0 

mm, the water vapor adsorption rate on this adsorbent decreases, which is 

connected with the influence of internal diffusion. This happens due to the presence 

of fine mesopores (3÷7 nm), which is evidenced by the data obtained by the BET 

method. 

Mathematical treatment of the obtained data was carried out. The basis was the 

kinetic equation of adsorption, proceeding by the first order relatively the water vapor 

concentration. The model fits well with the experimental data on the adsorption 

kinetics of water vapors on the aluminium oxide adsorbent. The kinetic parameters 

included in the equation were determined. According to the data of the kinetic 

experiment the optimal grain size (diameter) of the adsorbent was obtained, which 

was 2÷6 mm for balls and 2÷6 mm for cylinders with the ratio of grain length to its 

diameter ~1÷2. 
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THE FORMATION FEATURES OF A SOLID OXIDE FUEL CELL AND 
ITS INFLUENCE ON THE PERFORMANCE 

Anton Kuzmin1,2, Maksim Plekhanov1,2, Alexei Ivanov2,3 

1Vyatka State University, Russia, Kirov, Russia, a.v.kuzmin@yandex.ru 
2Institute of Solid-State Chemistry and Mechanochemistry SB RAS,  

Novosibirsk, Russia 
3Institute of High-Temperature Electrochemistry UB RAS, Yekaterinburg, Russia 

Solid oxide fuel cell (SOFC) is a promising electrochemical source of electricity 

presenting high efficiency, tolerance to various types of fuel, and low pollution. At the 

moment, the most commercialized electrochemical cells are based on zirconium 

dioxide stabilized by yttrium (YSZ) or other rear metal [1]. The demand for new 

materials to apply as SOFC electrolytes or electrodes is increasing as well. However, 

the impact of the microstructure is often left out of the SOFC related research. 

Currently, the majority of studies involving SOFCs are carried out on cells with a thin-

film electrolyte instead of a bulk supporting electrolyte. This approach is meant to 

reduce the internal resistance of the cell and to enhance performance [2,3]. There 

are several different ways to produce thin oxide films and among them, dip-coating 

and tape casting are ones of the most prominent. These techniques require relatively 

simple equipment and could produce films of a thickness of around 10 m [4]. 

Although dip-coating and tape casting are used frequently in oxide electrochemical 

cell manufacturing, the results are often controversial. This happens because small 

adjustments in those methods could lead to drastic differences in microstructure and 

performance. 

This work focuses on the influence of formation factors of SOFCs. The supporting 

Ni cermet anodes produced by the tape-casting technique and the anode functional 

layer, electrolyte, and two cathode layers are obtained using dip-coating. The most 

advantageous composition of a dispersive medium is developed for each level of a 

cell. One of the most challenging parts of obtaining a ceramic multilayer cell is co-

sintering of the layers. To adjust all of the parameters of the process heating 

microscopy was used, as it is shown in Fig. 1. 
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STUDY OF THE ELECTROCHEMICAL REACTION OF D-GLUCOSE 
CONVERSION IN THE PRESENCE OF AN ENZYME ELECTRODE 

Lakina N.V., Doluda V.Yu., Sulman M.G., Matveeva V.G., Pankov D.A.,  
Pasderina D.A., Sulman E.M. 

Tver State Technical University, Nab. A. Nikitina 22, 170026, Tver, 
Russia,science@science.tver.ru 

Enzymatic biofuel cells are a type of fuel cell that uses enzymes as 

electrocatalysts to catalyze the oxidation of fuel and / or the reduction of oxygen or 

peroxide to convert chemical energy into electricity [1,2]. Most conventional fuel cell 

electrocatalysts are catalysts made of conductive metal nanoparticles that operate at 

temperatures between 45 and 150 °C. These catalysts have the advantage of high 

stability and high activity in a strongly acidic and / or basic environment. However, 

they suffer from passivation problems that require simple and high-purity fuels (i.e. 

hydrogen and methanol). Enzymatic biofuel elements are a successful alternative [3]. 

One common example of a bioelectronic device is an enzyme biofuel element, as 

shown in figure 1 (a). 

The classical potentiometric enzyme electrode is a combination of ISE with an 

immobilized (insoluble) enzyme, which provides high selectivity and sensitivity for the 

determination of a particular substrate. 

In this work, the potentiometric response of a glass ion-selective electrode 

modified by an enzyme-polymer complex based on glucooxidase included in the 

matrices of polyvinylpyrrolidone (PVP), acetylcellulose (CA) and polyacrylamide 

(PAN) was studied. The reaction to determine the activity was the oxidation reaction 

of D-glucose, with an external supply of oxygen. The activity of the immobilized 

enzyme was determined by the reaction product of gluconic acid, the formation of 

which was determined potentiometrically.  

It was assumed that the potential of these electrodes depends on the 

concentration of glucose, oxygen and hydrogen peroxide in solution, as well as the 

presence of functional groups on the surface of the glass electrode. Potentials were 

calculated as the difference between measured and background values (without 

glucose). The reference electrode is Ag/AgCl (in 1M KCl). 
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USE OF CFD IN THE EVALUATION OF TEMPERATURE EVOLUTION 
IN THE LIQUEFACTION OF LEMON BAGASSE 

Brenno S. Leite1, Daniel J.O. Ferreira2, Sibele A.F. Leite1,  
Déborah dos Santos Jacob1, Bruno Tassi de Castro1 

1Institute of Science and Technology, Universidade Federal de Viçosa  
(UFV - Campus Florestal), Florestal, MG, Brazil; sibeleaugusta@ufv.br  

2Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal 
University of São Paulo (UNIFESP), Campus Diadema, Diadema, SP, Brazil 

 
The liquefaction yield and time reaction are directly influenced by the temperature 

process [1][2][3]. Despite of it, there it is still necessary to set a methodology to help 

researchers choose these operational parameters. The aim of this work was to use 

the Computer Fluid Dynamics (CFD) to evaluate the thermal profile in a jacketed 

vessel used to liquefy the lemon bagasse. A numerical 3-D model with two 

computational domains was built. The first domain considered the fluid flow of 

superheated steam inside the heated jacket at steady state flow rate. The second 

domain represented natural convection of glycerol and lemon bagasse mixture 

(polyol) considering transient fluid motion. The simulation time was 90 minutes with 

time-step of 0.1 seconds, 40 iterations for each time-step. The fluids’ physical 

properties were obtained considering the ideal conditions (glycerin and lemon 

bagasse properties). 

The Figure 1 indicated the predominance of natural convection (enhanced by 

convection of momentum and energy) during the first 20 minutes of heating. The high 

temperatures appear first in the superior part and there was a slow heating from 

above to below. However, there was a centerline at the vessel axis where the 

temperatures remain significantly lower than in rest of the domain, due to the 

downward stream produced by the natural convection cell. Temperatures stability 

was achieved below 60 minutes, although satisfactory biomass conversion required 

more time, according to previous study performed by this group [2]. Therefore, CFD 

model appear to be a helpful tool to guide researchers choose temperatures and 

minimal time which heat process will start steady state in liquefaction process.  
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HYDROTHERMAL LIQUEFACTION OF LIGNOCELLULOSIC INTO 
BIOFUELS AND ITS UTILISATION IN ENERGY 

Tshimangadzo Makhado1,*, Lindiwe Khotseng1, Isa Makarfi Yusuf2 

1Department of chemical science, University of the Western Cape, Robert Sobukwe 
Rd, Bellville, 7535, Cape Town, South Africa,* 4000131@MYUWC.ac.za 

2Department of chemical and metallurgical engineering, University of Witwatersrand, 
1 Jan Smuts, Braamfontein, 2000, Johannesburg, South Africa  

Fossil fuels which are found in nature are formed through a process of 

thermochemical conversion from organic matter buried beneath the ground and 

subjected to millions of years of high temperature and pressure [1]. Combustion of 

fossil fuels results in a net increase in greenhouse gases which could be controlled if 

alternatives to petroleum are used to produce fuels and chemicals. Increase in 

world’s population has resulted in an increase in energy consumption, the global 

dependence on non-renewable fossil fuels to meet energy’s need cannot be 

sustained for a long time [2,3].  

Lignocellulosic biomass such as wood, straws and stack has received great 

interest because they are abundant, renewable, and environmentally friendly and are 

obtainable from different sectors including agriculture and food processing. The wide 

variety of their origin also reflects on the nature of this biomass. Most biomass is 

obtained with a certain amount of moisture [4]. 

Hydrothermal liquefaction is a chemical reforming process through which organic 

matters are depolymerized and reformed in a heated, pressurized, oxygen-free 

enclosure. Operating temperatures, retention time and biomass content are amongst 

factors that control the yield and quality of biofuels. The primary product is an oily 

organic liquid while other products include solid residue, aqueous products and 

gases. The oils produced from this process has a lot of potentials as a biofuel. 

Biofuel can be used as fuel for burners, boilers, stationary diesel engine or turbines, it 

can also serve as a starting material for valuable petroleum-based fuels [1,3,5]. 

In this work, the potentials of agricultural and food wastes as feedstock in 

hydrothermal liquefaction will be investigated. The choice of materials stems from the 

need to focus on second generation biofuel production. The process will be 

conducted in a hydrothermal reactor while varying the ratios of the various biomass 

to be investigated. A high temperature, high pressure reactor will be used for all 

experiments.  Alongside the feed composition, the effect of process parameters such 
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ANFIS MODELLING APPLIED IN BIODIGESTERS 

Rego A.S.C.1, Leite S.A.F.2, Santos B.F.1, Leite B.S.2 

1Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic 
University of Rio de Janeiro (PUC-Rio), Rio de Janeiro – RJ, Brazil 

2Institute of Science and Technology, Universidade Federal de Viçosa  
(UFV - Campus Florestal), Florestal, MG, Brazil; sibeleaugusta@ufv.br 

Biogas production is an important response of the performance of anaerobic 

biodigestion process. Apart from its economic relevance, biogas production is 

important from environmental and operational point of view, since it represents a 

reduction in the organic matter of the effluent. Other operating parameters, such as 

pH, medium alkalinity, temperature and organic content (in and out), are also 

important for performance evaluation and control of the anaerobic biodigestion 

process, in order to increase biogas production [1]. 

Research developed by this group shown that biodigestion process was 

satisfactory modelled using artificial neural networks. ANFIS model was capable of 

predicting the biogas volume, with a determination coefficient of 0.81209, using 

reactor type, temperature, pH and FOS/TAC as inputs [2]. From these results, the 

goal of this work was to improve the use of neural network models in order to predict 

biogas generation, as a function of monitored parameters. The idea is to produce a 

tool capable to control the process and optimize biogas generation.  

In this sense, a model adaptive neuro fuzzy inference system (ANFIS) was 

proposed in order to predict biogas production 12 h ahead, according to the 

operational conditions used in the previous work [2]. Determination coefficient (R2) 

and root mean square error (RMSE) were used to ensure the quality of the results. 

Three biodigestion sets were operated in order to gain data to feed the neural 

networks model. All of them were operated at the same conditions. The biodigesters 

had different design: 1st) jacketed inox reactor, without recirculation of the effluent, 

5 L nominal capacity; 2nd) reactor made of PVC, with internal heating coil, without 

recirculation of the effluent, 7 L nominal capacity and 3rd) reactor made of PVC, with 

internal heating coil, with recirculation of effluent to provide mixing, 7 L nominal 

capacity. They were fed with a mixture of swine sewage and rice husk, in order to 

provide organic load between 1.0 and 1.5 g of volatile solids (VS) L–1 d–1. Biogas 

production was monitored and measured at a regular interval through water 

displacement method and converted to the volume in Normal Temperature and 
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Pressure Conditions (NTP). Organic load, alkalinity (FOS/TAC) and pH 

measurements were performed according to Rego et al [2]. 

The ANFIS modeling concerned the prediction of biogas volume produced 12 h in 

advance. The network architecture consisted of 6 input variables (temperature, 

reactor type, pH, FOS/TAC, biogas volume 12 h before and biogas volume at the 

present time). The total data consisted of 84 values for each input, which were split 

into training (67 %) and test (33 %). A Sugeno inference method was used to model 

the biodigestion system following a similar methodology used by Rego et a. [2]. This 

method creates rules based on the input variables values and the output is given by 

a Membership Function (MF) in the defuzzification. In the present study, neuro fuzzy 

system based on the Subtractive Clustering (SC) was used, with a linear output and 

hybrid training algorithm. The MF used in the SC was the Gaussian curve function 

(gaussmf) and the four parameters present in SC (range of influence, squash factor, 

accepted ratio and rejected ratio) were varied to achieve the best configuration. The 

R² and RMSE values were used to evaluate the performance in Matlab 2018b. 

All the tested architectures alongside its determination coefficients and errors 

values are depicted in Table 1. Overall, the model presented good results and the 

best performance was achieved using the configuration number 2, which presented 

the highest R2 value (0.988) as well the lowest RMSE value (2.51E-1). The change in 

the ANFIS parameters caused the set of rules to change as well. However, the 

number of rules do not dictate that the network will have a better performance, which 

can be observed by configurations 2 and 4, that had different performances despite 

having the same amount of rules. 
Table 1. ANFIS configurations used for biogas volume prediction 12 h in advance 

Configuration Range of 
influence 

Squash 
factor 

Accepted 
ratio 

Rejected 
ratio 

Number 
or rules 

RMSE R2 

1 0.5 2.5 0.5 0.15 8 1.28E-1 0.713 
2 0.75 1.25 0.5 0.15 11 2.51E-2 0.988 
3 0.65 1.25 0.5 0.3 10 7.00E-2 0.915 
4 0.5 2 0.5 0.25 11 4.82E-2 0.959 
5 0.6 2.5 0.5 0.15 5 1.21E-1 0.745 

Figure 1 depicts the comparison between experimental data and the output of the 

ANFIS model for the best configuration. Both graphs show that the model had an 

excellent performance in predicting the biogas volume. 
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MAGNETICALLY RECOVERABLE POLYMERIC CATALYST FOR 
CELLULOSE HYDROGENOLYSIS 

Manaenkov O.V., Kislitsa O.V., Ratkevich E.A., Matveeva V.G.,  
Sulman M.G., Sulman E.M. 

Tver Technical University, Tver, 170026, Russia, ovman@yandex.ru 

Glycols are an important feedstock; they are commonly used in different 

branches of modern industry [1, 2]. It is obvious that the demand for these polyols is 

extremely high. New possibilities in catalysis are offered by the use of magnetically 

recoverable catalysts [3]. In this research, a novel catalysts on the base of 

hypercrosslinked polystyrene (HPS) with magnetic properties are proposed for the 

one-pot processes of the cellulose conversion into ethylene glycol (EG) and 

propylene glycol (PG). Synthesized magnetically recoverable supports and catalysts 

were characterized by different physical-chemical methods. The magnetic properties 

of the supports Fe3O4/HPS MN270 and the corresponding catalysts were studied. 

The use of this catalyst in the process of microcrystalline cellulose hydrogenolysis in 

subcritical water allows PG and EG selectivities of 20.0 and 22.6 %, respectively, at 

100% of cellulose conversion. 

HPS-based magnetically recoverable Ru-containing catalysts were synthesized 

according to the following procedure. 0.3 g of HPS was placed to the 10 mL of EtOH 

with preliminarily dissolved calculated amounts of FeCl3 and CH3COONa. Then, the 

sample was heated up to 200 °C in argon medium and maintained at this temperature 

for 5 h. Resulting Fe3O4/HPS was washed with distilled water and then with EtOH. 

Washed sample of magnetically separable Fe3O4/HPS containing ca. 20 wt. % of Fe. 

For the synthesis of Ru-Fe3O4/HPS catalyst, Fe3O4/HPS MN270 was impregnated 

according to moisture absorption capacity with the solution of the calculated amount 

of ruthenium (IV) hydroxochloride in a complex solvent consisting of tetrahydrofuran, 

methanol. Then the catalyst was reduced in hydrogen flow (flow rate 100 mL/min) at 

300 °С for 2 hours, cooled in nitrogen and kept under air. In this way, Ru-containing 

system with calculated ruthenium content of 3 wt. % was synthesized. 

The experimental samples were shown to have a high saturation magnetization 

(4.0 ± 0.5 emu/g, Figure 1). The magnetization curves no remanence or coercivity is 

observed, demonstrating superparamagnetic behavior which is characterized for 
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PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE  IN 
CONTINUOUS FLOW PHOTOREACTOR USING TiO2-BASED 

COMPOSITES 

Shtyka O.1,2, Ciesielski R.1,2, Kedziora A.1,2, Dubov S.2, Gromov D.2,  
Maniecki T.1,2 

1Institute of General and Ecological Chemistry, Lodz University of Technology, 
Zeromskiego 116, 90-924 Lodz, Poland, email: chemshtyka@gmail.com 

2National Research University of Electronic Technology, Institute of Advanced 
Materials and Technologies, Shokin Square 1, 124498, Zelenograd, Moscow, Russia 

Solar-driven photocatalytic reduction of carbon dioxide is recognized as a 
promising approach to address both energy and environmental issues. The process 
is usually performed on different kinds of materials, including inorganic 
semiconductors, carbon-based semiconductors, metal complexes, supermolecules, 
and their derivatives. Among them, titanium dioxide is one of the most well-known 
and widely studied materials due to its abundance, high thermal stability, and non-
toxicity.  

Despite the progress made during the last three decades, the photocatalytic 
application of this material is still challenging due to a few reasons. One of these 
limitations is poor solar energy utilization due to a wide bandgap (3-3.2 eV) of TiO2 
which significantly limits adsorption of solar radiation to the UV light range accounting 
for only about 5% of the solar spectrum. Also, the following problem is a slow 
reaction rate due to the rapid recombination of the photogenerated electron-hole 
pairs. 

Therefore, lots of efforts have been put into the development of new effective 
catalysts with enhanced photocatalytic properties, such as nano – and 
microstructured TiO2, metal-decorated TiO2, and TiO2 – based composites [1]. 

The current research work deals with the investigation of physicochemical and 
photocatalytic properties of WO3/TiO2, CNT/TiO2, and Me/TiO2 photocatalysts. These 
catalysts were prepared by co-precipitation and chemical vapor deposition methods. 
Then, the samples were characterized and the photocatalytic activity was evaluated 
in a continuous-flow photo-microreactor under solar or UV irradiations. The effects of 
type and content of promoter on the physicochemical and photocatalytic properties of 
TiO2 were investigated.  

References 
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DEVELPOMENT OF MEMBRANE REACTOR FOR HYDROGEN AND 
SYNTHESIS GAS CO-PRODUCTION 

Markov A.A., Merkulov O.V., Patrakeev M.V. 

Institute of Solid State Chemistry, UB RAS, 91 Pervomayskaya Str.,  
620990 Ekaterinburg, Russia, markov@ihim.uran.ru 

The importance of hydrogen as an energy carrier and a raw material for the 

chemical industry is growing rapidly, initiating the development of new methods for its 

production. Recently, different ways of hydrogen generation based on water splitting 

have drawn increased attention [1,2]. These methods are attractive because water is 

an inexhaustible resource, and hydrogen obtained from water is originally clean, in 

contrast to that traditionally produced by steam conversion of methane. The most 

promising is the combination in a membrane reactor of water splitting (WS) and 

partial oxidation of methane (POM) for simultaneous production of hydrogen and 

synthesis gas, respectively. 

This work presents the test results of a ceramic tubular membrane of 

La0.5Sr0.5FeO3– under the condition of simultaneous POM and WS processes, as 

well as an assessment of the fundamental possibility of industrial use of this 

approach for the production of ultrapure hydrogen and synthesis gas based on the 

results of testing a reactor with 10 membranes. 

Powder of La0.5Sr0.5FeO3– prepared by the glycine-nitrate method and 

characterized by X-ray diffraction as a single phase oxide. The membranes were 

made by hydrostatic pressing method. Reactor was equipped with 10 membrane 

elements of the same sizes and with the total effective area of about 140 cm2, Glass 

rings glued to the end surfaces were used to seal the tubular membranes in the 

reactor provided a separation of the POM and WS compartments. A nickel catalyst 

for the partial oxidation of methane was placed on the outer side of the membrane in 

the POM compartment. The computerized experimental setup was equipped with 

temperature controllers and gas flow controllers. The analysis of outlet gases was 

carried out with the help of a gas chromatograph. The experimental setup is shown in 

Fig. 1a. 

Based on volume concentrations of outlet sweep gas components, xi, the POM 

process was characterized by conversion, XCH4, CO selectivity, SCO, hydrogen to 
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carbon monoxide ratio, H2/CO, flux of the dry synthesis gas, FSG, and oxygen 

separation flux: 
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Results of testing a membrane reactor at 900 °С showed that the methane 

conversion in the process of partial oxidation was not less than 99.0 %, at CO 

selectivity of 92 %, Fig. 1b. The oxygen flow density reached 1 ml·min–1·cm–2. The 

specific hydrogen flux in accordance with the material balance conditions was  

~ 2 ml·min–1·cm–2. A long-term stability test during more than 200 h showed the 

ceramic membrane of La0.5Sr0.5FeO3– provides an appreciable stability of the 

process characteristics in a stationary state at 900 °C and in a reversible temperature 

change between 950 °C and 900 °C. 

    
(a)                                                                  (b) 

Figure 1. (a) – the experimental setup of membrane reactor and (b) – parameters POM processes as 
functions of methane flow at 900 °C 
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PYROLYSIS OF CONIFEROUS AND DECIDUOUS WOOD WASTES 

Lugovoy Yu.V., Chalov K.V., Stepacheva A.A., Kosivtsov Yu.Yu.,  
Sulman M.G., Sulman E.M. 

Tver State Technical University, Department of Biotechnology, Chemistry and 
Standartization, A. Nikitin str., 22, 1770026, Tver, Russia 

E-mail: sulman@online.tver.ru 

The problem of processing raw materials of plant origin in order to obtain energy 

every year becomes more and more urgent due to the limited supply of traditional 

energy carriers. 

According to experts, the annual increase in biomass is about 170 billion tons, 

which makes it possible to include it in the production of energy resources and use it 

as an alternative to fossil resources [1]. The use of plant biomass will maintain the 

balance of CO2 in the atmosphere, as well as reduce the negative impact on the 

environment by reducing the amount of unused waste. 

Currently, effective methods of processing solid lignin-containing waste to 

produce products valuable for industry are thermal processing methods [2]. As 

experience gained in the field of thermal processing of biomass waste shows, the 

most effective and easily industrially feasible method is the pyrolysis method [3], 

which allows one to obtain gaseous, liquid, and solid carbon-containing products [4]. 

An experimental study of the process of pyrolysis of wood waste was carried out 

for 50 minutes in a nitrogen environment using a batch laboratory setup. As samples 

of wood waste, sawdust of pine and birch was used with a moisture content of 

3.20 % and 3.18 %, and an ash content of 0.36 % and 0.17 %, respectively. Sawdust 

with an average particle size of 0.25-1 mm was used in this study; 1-2 mm; 2-3 mm. 

The process of pyrolysis of wood waste was carried out in the temperature range 

from 400 to 500 °C. The choice of the temperature range was based on previously 

obtained data from thermogravimetric analysis. 

Thermogravimetric study of wood waste showed a difference in the processes of 

destruction of pine and birch samples, which is most likely due to the different 

component composition and structure of these samples. The heat of combustion of 

gaseous products of hardwood pyrolysis is 1.1-1.2 times higher than that of conifers, 

which is associated with higher concentrations of ethane and lower concentrations of 

hydrogen, which has a low volumetric heat of combustion. 
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Table. Kinetic parameters of the wood waste pyrolysis process calculated by 
thermogrammetric analysis 

Wood type 
Model independent methods Linear kinetics 

methods 
ASTM E698 ASTM E1641 

Birch  
EA, kJ / mol 
Aexp 
n reactions 
R (coefficient) 

 
141.1±7.3 
9. 90‧10–1 

- 
- 

 
123.6±9.0 
9.03‧10–1 

- 
- 

 
128.2 

9.3‧10–1 
2.53 

0.9978 
Pine 
EA, kJ / mol 
Aexp 
n reactions 
R (coefficient) 

 
126.0±5,7 
9.89‧10–1 

- 
- 

 
76.3±17.4 
4.37‧10–1 

- 
- 

 
119.3 

8.4‧10–1 
2.31 

0.9975 

Samples of birch wood had greater thermal stability compared to samples of pine 

wood, which confirms higher values of activation energy (see table). 

Analysis of the data presented in table allows us to judge that the activation 

energy of pyrolysis of birch sawdust is greater than pine sawdust, according to 

various estimates, from 8.9 to 15.1 kJ / mol. This confirms the lower thermal stability 

of pine wood in the studied temperature range of the process. 

The optimal temperature for the pyrolysis process of the selected wood waste 

samples is 450 °C with a fraction size of 1-2 mm. Coal residues of pyrolysis of wood 

waste by the values of the specific surface area correspond to the characteristics of 

cheap carbon sorbents used in industry, which indicates the possibility of their 

practical application. 
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TORREFACTION OF FOREST RESIDUES USING A LAB-SCALE 
REACTOR 

Marta Martins1, Maria Amélia Lemos1, Francisco Lemos1, Helena Pereira2 

1CERENA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal 
2Centro de Estudos Florestais, Instituto Superior de Agronomia,  

Universidade de Lisboa, Lisboa, Portugal 

Lignocellulosic biomass is one of the sources that are under investigation in the 

effort to obtain renewable fuels. It is characterized by a low bulk density, poor 

grindability, low calorific value and high moisture content [1]. Pre-treatment of solid 

biomass by torrefaction can improve its properties and generates a solid product 

(charcoal) with lower moisture content, higher bulk density, higher heating value, 

higher hydrophobicity and higher grind ability than the original raw biomass [2]. In 

addition, collecting and using this forest waste can also result in increased safety, in 

relation to forest fires. In this work we studied, as a possible energy source, shrubs 

that occur widely in the Portuguese forest, e.g Cistus ladanifer (Esteva), and which 

have an invasive character. A laboratory scale reactor was built for the torrefaction 

process, with a Schlenk-type glass vessel placed in an oven for which the 

temperature was controlled at predefined levels. The gases exiting through the top of 

the reactor were cooled by a condenser and collected in a liquid collection system. A 

pump fed the coolant fluid to the condenser, from an external thermostat kept at 

20 °C, to ensure an efficient collection of the liquid fraction and control the 

composition of the gaseous phase products in the outlet. The slow pyrolysis 

experiments were carried out by initially flushing the lab-scale reactor with N2, and 

then feeding the reactor with varying biomass quantities and heating it to a specified 

temperature. The torrefaction temperatures were varied from 250 to 350 °C 

maintaining a reaction time of 30 min with a heating rate of 10 °C min–1. The solid 

obtained at the end of the torrefaction (charcoal) was collected from the schlenk. 

After the torrefaction process, the heating value of the torrified samples were 

determined by combustion using thermal analysis coupled with differential scanning 

calorimetry (TG/DSC apparatus). The morphological characteristics of the biomass 

samples were assessed, before and after thermal analysis, by microscopy 

techniques. To evaluate the torrefaction performance for the experimental conditions 

tested, mass and energy yields (Figure 1 and Figure 2) of the torrified materials were 
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MATHEMATICAL MODELING OF VACUUM GAS OIL CATALYTIC 
CRACKING FROM WEST SIBERIAN AND KAZAKHSTAN OIL BLEND 

Nazarova G.Y.1, Ivashkina E.N.1, Ivanchina E.D.1, Oreshina A.A.1, 
Burumbaeva G.R.2, Seitenova G.Z.3, Kaliev T.A.2,3 

1Tomsk Polytechnic University, Tomsk, Russia, silko@tpu.ru 
2LLP Pavlodar Petrochemical Plant, Pavlodar, Kazakhstan 

3S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan 

This paper presents the adapting results of the catalytic cracking mathematical 

model [1] to an industrial conversion unit of vacuum distillate from West Siberian and 

Kazakhstan oil blend. The mathematical model takes into account the physical-

chemical patterns of catalytic cracking hydrocarbon transformation. A set of 

laboratory studies using liquid chromatography, structural group analysis, optical, 

cryoscopic methods, etc., performed on TPU basis of, allow us to establish the main 

characteristics and a wide range of the feedstock composition changing (table 1). 

Table 1. Feedstock composition to model calculation  

Characteristics 
Content, wt % . 

№1 №2 №3 №4 №5 
Saturated hydrocarbons 59.79 58.95 63.89 66.83 73.13 
Aromatics 35.46 36.61 33.47 30.24 23.31 
Resins 4.75 4.44 2.64 2.93 3.56 
Saturated hydrocarbons, aromatics and resins ratio 
(CSH/СA/СR), unit 0.35 0.36 0.72 0.75 0.88 

 

To verify the model, we compared the calculated and experimental data on the 

products yields, the content of the PPF and BBF in the rich gas, the coke content on 

the catalyst, the gasoline hydrocarbons group concentration and the cracking 

temperature. As a result, the calculation error does not exceed 7.0 %. The 

mathematical model application allows us to investigate how the feedstock 

composition influences the catalytic cracking product distribution, the yield and coke 

content on the catalyst.  

It is shown that, the yield of gasoline fraction changes by 1.37 wt % with 

increasing the saturated hydrocarbons, aromatics and resins ratio from 0.35 to 0.88 

units. Application of the catalytic cracking mathematical model makes it possible to 

evaluate comprehensively how the feedstock composition and technological 

parameters influence the yield and composition of the process products (Figure 1). 

mailto:silko@tpu.ru
https://www.multitran.com/m.exe?s=at+LLP&l1=1&l2=2
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Figure 1. a) The catalytic cracking gasoline and coke yields depending on the feedstock composition 
b) The catalytic cracking gasoline yield and coke content on the catalyst depending on the feedstock 

composition and cracking temperature 

According to figure 1 the gasoline yield are characterized by extremum with 

increasing the cracking temperature (44.82 and 43.15 wt %, if saturated 

hydrocarbons, aromatics and resins ratio (СSH/СА/СR) are 0.88 and 0.35 unit 

respectively). Importantly, that when optimizing the process, it is required to consider 

that the maximum gasoline yield is shifted to low temperatures from 526 to 523 °C, 

when the feedstock saturated hydrocarbons amount increases.  

Predictive calculations provide us to adjust the riser process conditions in order to 

increase the target product yields and to reduce the excess coke formation, 

depending on these factors. In the future, we are going to account the reversible and 

irreversible catalyst deactivation and to develop the methodology for the feedstock 

group composition calculation on the basis of plant laboratory regular data about the 

fractional composition, the density, the molecular weight, the refractive index and 

other quality indicators to expand the model application. 
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Biocatalysts based on immobilized enzymes received considerable attention due 

to important applications in syntheses of value-added chemicals, pharmaceuticals 

and drug intermediates with great catalytic efficiency and high yields of target 

molecules. The important advantages of such biocatalysts are enhanced stability in 

tolerant pH and temperature range, separation from reaction solutions, stability in 

repeated use, etc. In this report, we discuss recent findings in biocatalyst design, in 

particular, types of promising supports, the biocatalyst surface modification, and 

incorporation of magnetic nanoparticles for facilitated magnetic recovery. 

Furthermore, we highlight the development of multienzyme and enzyme/nanoparticle 

catalysts for cascade reactions, which are carried out in a one-pot process and allow 

elimination of isolation and purification of intermediates. We will focus on most 

promising supports, methods of enzyme attachment as well as on multienzyme 

biocatalysts and biohybrid catalysts for cascade reactions. The cascade reaction 

catalysts represent an emerging technology inspired by Nature where the spatial 

localization allows for the high chemo-, regio- and stereoselectivity 

Among supports for biocatalysts, functionalized porous materials with a 

hierarchical pore structure containing large mesopores or macropores appear 

promising as they possess high surface areas and can accommodate large amounts 

of enzymes in a controlled manner. However, for better performance, often an 

additional modification is needed for protecting enzymes or making a biocatalyst 

more hydrophilic or hydrophobic. Magnetically recoverable biocatalysts are clearly a 
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hot topic as they allow easy magnetic separation without loss of catalytic 

performance and in some instances, show the catalytic property enhancement. 

The most prominent trend in the biocatalyst design is the development of 

catalysts for cascade reactions using multiple enzymes or combining enzymes with 

catalytic NPs. Both areas of research are still very new but they already showed 

promise for the development of biocatalytic processes, where several reactions occur 

in a one-pot reactor. The best biocatalysts display exceptional catalytic efficiency and 

a minimal loss of activity compared to native enzymes and require low energy 

consumption. For the cascade reaction catalysts, there is no need for isolation of 

intermediates, no hazardous chemicals are formed, and the waste is minimized 

compared to conventional consecutive reactions, resulting in the same target 

products. We believe this is the most promising direction for the development of 

biocatalysis. 

As an example, the results of the synthesis of biocatalytic systems based on 

immobilized enzymes of the oxidoreductase class are presented. The main aspect of 

the report is the using of magnetic silica and alumina and magnetite nanoparticles 

based on mesoporous zirconia and titania as a supports. We control acidity, porosity, 

and crystal structure of these supports, which puts us in a unique position of 

acquiring a new knowledge for further biocatalyst development. 

The obtained fundamental and applied data about the biocatalytic oxidation 

processes of aromatic compounds and monosaccharides including one-pot cascade 

process will allow creating the innovation technologies for the production of 

biologically active compounds which are high-demand by pharmaceutical. 
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MATHEMATICAL MODELING OF VACUUM GAS OIL CATALYTIC 
CRACKING FROM WEST SIBERIAN AND KAZAKHSTAN OIL BLEND 
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Burumbaeva G.R.2, Seitenova G.Z.3, Kaliev T.A.2,3 

1Tomsk Polytechnic University, Tomsk, Russia, silko@tpu.ru 
2LLP Pavlodar Petrochemical Plant, Pavlodar, Kazakhstan 

3S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan 

This paper presents the adapting results of the catalytic cracking mathematical 

model [1] to an industrial conversion unit of vacuum distillate from West Siberian and 

Kazakhstan oil blend. The mathematical model takes into account the physical-

chemical patterns of catalytic cracking hydrocarbon transformation. A set of 

laboratory studies using liquid chromatography, structural group analysis, optical, 

cryoscopic methods, etc., performed on TPU basis of, allow us to establish the main 

characteristics and a wide range of the feedstock composition changing (table 1). 

Table 1. Feedstock composition to model calculation  

Characteristics 
Content, wt % . 

№1 №2 №3 №4 №5 

Saturated hydrocarbons 59.79 58.95 63.89 66.83 73.13 

Aromatics 35.46 36.61 33.47 30.24 23.31 

Resins 4.75 4.44 2.64 2.93 3.56 

Saturated hydrocarbons, aromatics and resins ratio 
(CSH/СA/СR), unit 

0.35 0.36 0.72 0.75 0.88 

 

To verify the model, we compared the calculated and experimental data on the 

products yields, the content of the PPF and BBF in the rich gas, the coke content on 

the catalyst, the gasoline hydrocarbons group concentration and the cracking 

temperature. As a result, the calculation error does not exceed 7.0 %. The 

mathematical model application allows us to investigate how the feedstock 

composition influences the catalytic cracking product distribution, the yield and coke 

content on the catalyst.  

It is shown that, the yield of gasoline fraction changes by 1.37 wt % with 

increasing the saturated hydrocarbons, aromatics and resins ratio from 0.35 to 0.88 

units. Application of the catalytic cracking mathematical model makes it possible to 

evaluate comprehensively how the feedstock composition and technological 

parameters influence the yield and composition of the process products (Figure 1). 



Figure 
b) The 

Acc

increas

hydroca

respect

that the

when th

Pre

increas

depend

irrevers

group c

fraction

other q

Referen

[1] E. Iv
reac

Acknow

The

1. a) The ca
catalytic crac

cording to 

sing the 

arbons, a

tively). Imp

e maximum

he feedsto

edictive cal

se the tar

ding on the

sible cataly

compositio

nal compo

uality indic

nces 

vanchina, E. 
ctor, Chem. E

wledgements

e research wa

talytic cracki
cking gasolin

c

figure 1 

cracking 

romatics a

portantly, t

m gasoline

ock saturate

lculations p

rget produ

ese factors

yst deactiv

on calculat

sition, the

cators to ex

Ivashkina, G
Eng. J. 329 (

s 

as supported

ing gasoline 
ne yield and 
composition 

the gasol

temperat

and resins

hat when o

e yield is s

ed hydroca

provide us

uct yields

s. In the fut

vation and

ion on the 

 density, t

xpand the 

G. Nazarova,
(2017) 2 62–

d by RSCF g

PP-54

377 

and coke yie
coke conten
and cracking

ine yield 

ture (44.

s ratio (С

optimizing 

shifted to lo

arbons am

to adjust t

and to 

ture, we ar

d to develo

basis of p

the molec

model app

, Mathematic
–274. 

rant № 19-7

elds dependi
nt on the cata
g temperatur

are chara

82 and

СSH/СА/СR

the proce

ow temper

mount incre

the riser pr

reduce th

re going to

op the met

plant labora

cular weigh

plication. 

cal modelling

1-10015. 

ng on the fee
alyst dependi
re 

cterized b

43.15 wt %

R) are 0.8

ss, it is req

ratures fro

ases.  

rocess con

e excess 

o account t

thodology 

atory regul

ht, the refr

g of catalytic 

edstock com
ing on the fe

by extremu

%, if sa

88 and 0.

quired to c

om 526 to 

nditions in o

coke for

the reversi

for the fe

lar data ab

ractive ind

cracking rise

 

 
mposition 
eedstock 

um with 

aturated 

35 unit 

consider 

523 °C, 

order to 

rmation, 

ible and 

edstock 

bout the 

dex and 

er 



PP-55 

378 

MATRIX CONVERSION OF PROPANE-BUTANE MIXTURE TO 
SYNGAS 

Ozersky A.V.1,2, Zimin Ya.S.1,2, Nikitin A.V.1,2, 
Fokin I.G.1, Sedov I.V.1, Savchenko V.I.1,2, Arutyunov V.S.1,2 

1Institute of Problems of Chemical Physics RAS,  
Chernogolovka, Moscow region, Russia, alex.ozesky.1992@gmail.com 

2N.N. Semenov Federal Research Center for Chemical Physics RAS,  
Moscow, Russia 

Currently, technologies that will enable the use of unconventional sources of 

gaseous hydrocarbon raw materials to produce petrochemical products with high 

added value are extremely relevant. One of these types of unconventional 

hydrocarbon raw materials is associated petroleum gas (APG), rich in propane and 

butane, most of which is flared [1]. 

One of the effective methods of processing of APG can be a matrix conversion of 

hydrocarbons to syngas, flowing in the super-diabatic combustion conditions in which 

the conversion of fuel-rich mixtures [2, 3]. The resulting synthesis gas (a mixture of 

CO and H2) can be directed to the subsequent catalytic stages of the synthesis of 

methanol, dimethyl ether, and synthetic liquid hydrocarbons [4]. 

Experimental tests of the matrix conversion of propane-butane mixture were 

carried out using air as an oxidizer. The studies were carried out when the values of 

the main process parameters changed: the initial ratio of fuel and oxidizer, the 

pressure inside the Converter, and the flow rate of the initial mixture. As a result, for 

further optimization of the process was determined as the region of parameters in 

which there is a stable combustion of propane-butane mixture.  

To date, a synthesis gas has been obtained with a hydrogen content of 

11.5 % vol, CO - 13.5 % vol, and CO2 - 4.7 % vol with a specific fuel mixture 

consumption of 10 l / h per 1 cm2 of the matrix surface and an excess oxidizer 

coefficient  = 0.4. 

During the matrix conversion, in addition to the main components of the synthesis 

gas, a small amount of acetylene is obtained, at the level of 0.5 – 1 % vol., which is a 

catalytic poison in the further processes of obtaining petrochemical products. In this 

work, it is experimentally shown that adding water vapor to the initial mixture allows 

reducing the acetylene content in the synthesis gas by 2-3 times.  
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Thus, for the first time, studies were conducted on the matrix conversion of 

propane-butane mixture into synthesis gas at various process parameters. 

Atmospheric air was used as an oxidizer. It is worth noting that under the studied 

conditions, a complete conversion of all reagents was observed. The total content of 

CO and H2 in the nitrogen-ballasted syngas was more than 25 % vol. 
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ACTIVE AND STABLE Ru AND Ni-BASED CATALYSTS FOR CO2 
REFORMING OF GLYCEROL TO SYNGAS 
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Glycerol emerges as a continuously and undesirably accumulating side product 

of biodiesel, a trending renewable counterpart of the conventional diesel. Catalytic 

reforming of glycerol with CO2 offers simultaneous valorization of a greenhouse gas 

with a renewable and commercially available hydrocarbon to synthesis gas, a value–

added feedstock for the production of methanol, synthetic fuels and dimethyl ether. 

While co–utilization of the two wastes to syngas attracts increasing interest [1], the 

literature is still open for the catalysts that are both active and stable under the 

conditions of glycerol dry reforming (GDR). In this respect, La2O3 (L), ZrO2 (Z) and 

La2O3–ZrO2 (LZ) supported Ru and Ni–based catalysts are studied at GDR 

conditions to elucidate the roles of active species and support material on catalytic 

activity and stability. The active species, Ru and Ni, are selected on the basis of their 

superior performance in transforming hydrocarbons and CO2 to syngas [2].  

The catalysts containing 1 wt. % Ru and 5 % Ni are synthesized by incipient-to-

wetness impregnation technique explained elsewhere [3]. Upon calcining them at 

800 °C for 4 h, the catalysts are reduced under 99.99 % pure H2 flow (Linde) at 

800 °C for 2 h prior to the GDR tests. Experiments are conducted in a quartz reactor 

at the residence time range of 0.5–3.75 mg·min/Nml. Dosing of high purity (>99.5 %) 

glycerol (Sigma-Aldrich) and gaseous species (CO2 and N2, purities: 99.99 %, Linde) 

are made by an HPLC pump (Shimadzu LC-20AD) and mass flow controllers (Brooks 

5850E), respectively. In all experiments, glycerol and total flow rates at inlet are fixed 

to 4 and 40 Nml/min, respectively. Molar inlet ratio of CO2–to–glycerol (CO2/G) and 

temperature are studied in the ranges of 1–4 and 650–750 °C, respectively. Glycerol 

conversion is calculated by elemental balance of H existing in gaseous species 

detected by the gas chromatographs [3]. Activity and stability are quantified in terms 

of CO2 conversion which is obtained directly from the measured inlet and exit CO2 

molar flow rates, making it a more reliable metric for catalyst performance. 

Equilibrium conversions of CO2 and glycerol are calculated by GFE minimization in 

CHEMCAD (v7.1.4) suite. 
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ISOMERIZATION OF n-BUTANE AND C4 REFINERY FRACTIONS  
ON Pd PROMOTED SULFATED ZIRCONIA.  

KINETIC ASPECTS AND PROCESS MODELING 

Ovchinnikova E.V., Banzaraktsaeva S.P., Urzhuntsev G.A., Chumachenko V.A. 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, evo@catalysis.ru 

Catalyzed by sulfated zirconium, isomerization of n-butane is an alternative 

method to the conventional one. Highly active and stable Pd-modified sulfated 

zirconia catalysts (Pd-SZ) can significantly improve the n-C4 isomerization process 

and are promising for industrial implementation [1]. Further in-depth studies of the 

kinetic aspects and the process when using real feedstocks, such as C4 refinery 

fractions, were the goal of the present work.  

Kinetic experiments on Pd-SZ catalysts were performed in the isothermal flow 

reactor in the n-C4 conversion range of 5…25 %. Reaction conditions were as 

follows: temperature 125…160 °C; WHSV 1…11 h–1; H2/C4 0.1…1.0 mol/mol, and 

pressure 6…25 bar. A simplified kinetic model of n-C4 isomerization was proposed.  

Effect of the real feedstocks (Table) on 

the isomerization process was studied at 

20 bar, with variating temperature (120… 

160 °С), feedstock WHSV (1.0…2.5 h–1), and 

Н2/n-С4 (0.1…0.5) [2]. Conditions were 

determined that prevent excessive formation 

of C1-C3 alkanes and provide a high 

isobutane yield. Based on the experimental 

data, mathematical modeling of the process in an adiabatic reactor was performed. 

Key indicators of the catalytic process for the C4 refinery fractions isomerization have 

been evaluated.  
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Table. Composition (%wt.) of 
 n-butane and C4 refinery fractions 

Composition n-C4 
C4 refinery fractions

A B
Ethane – – 0.002

Propane 0.017 0.008 0.294
Isobutane 0.125 1.192 9.470

n-Butane
99.72

4 
98.063 89.623

Neopentane 0.134 0.713 0.604
Isopentane – 0.020 0.004
n-Pentane – 0.004 0.003
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EFFECT OF C3-ALCOHOLS IMPURITIES ON ALUMINA CATALYZED 
DEHYDRATION OF BIOETHANOL TO ETHYLENE. EXPERIMENTAL 

STUDY AND PROCESS MODELING 

Ovchinnikova E.V., Banzaraktsaeva S.P., Surmina M.A., Chumachenko V.A. 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, sa_r_dana@mail.ru 

The transition of the energy and traditional petrochemical industries to renewable 

sources of plant origin is consistent with the Principles of Green Chemistry. 

Bioethanol produced from non-food phytogenic feedstock can be used to produce 

ethylene as a platform product for a large number of downstream derivatives [1]. 

After distillation, bioethanol contains impurities of C3-alcohols, which can have an 

adverse impact on its further processing [1-3]. In the present work, we focused on the 

studies of the organic impurities influence on the dehydration of contaminated 

ethanol to ethylene and the catalytic activity of the proprietary alumina catalyst [4]. 

We examined two samples of real 2G bioethanol and found that C3-alcohols (1- 

and 2-propanol) were the predominant impurities. A series of model 92 % wt. 

bioethanol samples with 1-propanol or 2-propanol loading from 0.1 to 5 g/L were 

prepared and used for dehydration. The catalytic activity was studied in an isothermal 

flow reactor at 370-400 °C using the acid-modified alumina catalyst [4] under kinetically 

controlled conditions. The maximum allowable content of C3-alcohols in ethanol was 

found to be 1 g/L, which is equivalent to 0.05 % mol in gaseous feedstock. With such a 

loading, ethanol conversion and ethylene yield are not suppressed by impurities, but 

the yield of by-products (acetaldehyde, hydrogen, butenes) is greatly reduced, which 

significantly improves the quality of ethylene produced. 

Based on the experimental results, mathematical modeling of dehydration 

process in the multitubular fixed bed reactor was performed. We applied a 

pseudohomogeneous 2D reactor model [5] with an extended basic kinetic model. 

Key indicators of catalytic process have been evaluated for using bioethanol with C3-

alcohols impurities. 
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There are large number of ways for cleaning the surfaces of various components 

made from metals or their alloys. These methods are based on the use of organic 

liquids, aqueous solutions of detergents and etchants in combination with mechanical 

cleaning technique like, for example, pneumatic and hydroabrasive jets. Most of 

these procedures are applicable to easily accessible surfaces of metal components. 

A special case is the high-quality cleaning of the hard-to-reach surface of the cracks 

from metal oxides and fuel combustion products, formed on the turbine blades during 

the operation of aircraft engines and power plants. 

It is known that DAYTON technology is widely used to repair cracked metal 

components, that increases the service life of these components, saves materials 

and reduces labor costs compared to the manufacture of the new ones. 

Repair of the components using this technology is carried out in two stages: 

cleaning the surface of cracks from metal oxides; high-temperature brazing of cracks 

with special high-heat-resistant solders. The key stage in the DAYTON technology 

(developed and patented by the UDRI-University of Dayton, Research Institute in 

1980) is the process of high-quality removal of metal oxides from the surface of the 

cracks mouth (FCP-Fluorocarbon Cleaning Process) [1]. 

Thus, preparation of cracks surface, i.e., removal of metal oxides and 

hydrocarbon combustion products, is a requirement for repairing cracked 

components by high-temperature vacuum brazing. In the Boreskov Institute of 

Catalysis SB RAS, together with the Lavrentyev Institute of Hydrodynamics SB RAS, 

interdisciplinary research was carried out to develop the new method for cleaning 

microcracks in metallic materials, taking into account the aspects of chemical, 

thermophysical and hydrodynamic processes in capillary structures of micron and 

submicron sizes [2,3]. Concept and the new approach based on the use of a contact 
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solution in the liquid phase have been developed. Compositions of contact solutions 

have been developed and setup-stand for experimental justification of the new 

method was created. The experiments were carried out on simulator samples made 

of nickel-base alloy (see Table) and pre-treated under operating conditions. In the 

experiments, the state of the cracks surface of the samples-simulators was controlled 

by an INCA Energy (X-ray energy dispersion) spectrometer, installed on the LEO-420 

focused beam electron microscope. The process of cleaning the dirty surface of 

alloys from metal oxides is carried out without the use of high temperatures (about 

100 °C versus 500-1100 °C for DAYTON FCP technology) and pressures (≤ 1 atm). 

Table. Composition of alloys 

Alloy С Сr Al Ti Mo W Co Nb B Ni 

C-1023 0.15 15 4.2 3.6 8.25 - 10 - - Basis 

ЖС6У 0.1-0.2 8-9.5 5.1-6 2-2.9 1.2-2.4 9.5-11 9-10.5 0.8-1.2  0.05 Basis 

It is shown that the selected gas and hydrodynamic parameters of the process 

with variation of the temperature and composition of the contact solutions provide 

multi-cycle flushing of narrow gaps in times not exceeding 30 min, achieving 

complete removal of the metal oxides and of the hydrocarbon fuel combustion 

products. 
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Abstract 

To address the environmental issues caused by fossil fuels utilization, and 

achieve energy sustainability, the production of BTEX (benzene toluene 

ethylbenzene xylenes) which are important feedstock’s in petrochemical industry 

should be produced from biomass [1]. Catalytic fast pyrolysis is an intensive 

technology by which solid biomass can be converted into bio-oil. However, the it not 

suitable to use as drop in fuel, hence it has to be upgraded on catalysts before the 

pyrolysis vapors condensed. Ex-situ catalytic upgrading is best method to produce 

the aromatics. The vast reserves of the methane around the world, motivated the 

researcher to employ co-feeding gas in the catalytic upgrading process of pyrolysis 

oil [2]. Methane, with highest H/C eff ratio = 2, could provide the methyl radical in the 

pyrolysis process and increase the bio-oil yield, the hydrogen radicals can maintain 

the bronzed acidic sites on zeolite by exchanging the proton with zeolite and thus 

suppress the deactivation of zeolite. In this context, we employed the methane as the 

co-feeding gas to create different hydrogen rich environment in the ex-situ upgrading 

of yellow poplar pyrolysis to increase BTEX content in the upgrading bio-oil.  

Experimental  

Ex-situ catalytic experiments performed in down flow fixed bed reactors 

connected in Series. The following parameters were used applied, biomass: Yellow 

poplar (15g), Catalysts: Z: HZSM-5 (5g), 1Ga-Z: 1Ga/HZSM-5 (5g), C/B = 0.33, 

Reaction environment: N2, CH4 (with and without decomposition), the effluent as from 

the methane decomposition was fed into ex-situ upgrading reaction. 
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Results  

 
Figure 1. Distribution of ex-situ upgrading products 

NC* represents, Z: HZSM-5, 1GaZ:1%Ga/HZSM-5, CH4D800 represent environment of the methane 
decomposition at 800 °C  

 
Figure 2. Comparison of BTEX yield under N2, methane environments 

Conclusions 

The yield of BTEX in the catalytic ex-situ upgrading of yellow poplar pyrolysis was 

reached to maximum of 9.58 wt. %, when reaction environment switched from N2 to 

methane decomposition. Methyl and hydrogen radicals generated from methane, 

reduced the oxygenated products in the upgraded oil. 
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Oxygen-transport membranes (OTM) composed of oxides with mixed ionic-

electronic conductivity (MIEC) are widely used in various innovative technologies. 

They have 100 % oxygen selectivity can be easily incorporated into high-temperature 

processes, for example, partial oxidation of hydrocarbons (methane conversion to 

syngas, etc.). 

In our previous work [1], we show the opportunities given by the heating of OTMs 

by passing AC through the membranes. This way not only allows us to enhance the 

energy efficiency, productivity of the membranes, and gives fast-response control of 

the reactor temperature but also opens the access to the surface of the operating 

membrane and therefore makes it possible to study the mechanism of oxygen 

permeability in situ with the help of physicochemical techniques. 

Moreover, we have developed new oxygen release techniques (QEOR and 

OPPR) to obtain kinetic and equilibrium parameters in grossly nonstoichimetric 

oxides [2, 3]. 

The aim of this work was to carry out a comprehensive analysis of the effect of 

oxygen nonstoichiometry on the kinetic parameters in the processes of oxygen 

transport and relaxation measurements. A theoretical model has been developed for 

comparing the results of three independent methods. The influence of oxygen 

nonstoichiometry to the process of oxygen transport through gas-tight microtubular 

membranes was carried out. Obtained data were used to optimize the developed 

microtubular membrane reactor. 
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The work refers to the issue concerning thermal combustion of lean methane air 

mixtures in ceramic bed. Such mixtures are known as Ventilation Air Methane (VAM) 

and are released into the atmosphere by the coal mine industry. The methane 

concertation in VAM is usually below 1 vol. %. The process of VAM utilization by 

thermal combustion can be successfully accomplished in thermal flow reversal 

reactors (TFRR) [1, 2]. The combustion process in TFRR is initialized in a monolith 

ceramic bed where temperature is higher than the ignition temperature. The ceramic 

bed in the form of honeycomb monoliths with many parallel channels is commonly 

used in many industrial apparatus due to the low flow resistance as well as excellent 

heat transfer and mechanical properties for a large thermal gradient. However, their 

structure do not allow mixing of the reactants in the reactor cross-section, what can 

be relevant in high temperature processes. It seems that such a cross-mixing can be 

achieved by the application of a ceramic foam. The idea was born during the work on 

aerodynamic simulations of the pilot scale of TFRR (35,000 m3
STP/h) with monolith 

bed [3]. The simulations revealed that the uniformity of gas flow in the outlet section 

of the reactor was not satisfactory. This is caused by too high gas velocity in the 

channel at the top of the TFRR what causes turbulence at the entrance to the 

monoliths of the outlet section. One solution is the modification of the geometry of the 

top part of the TFRR reactor. Good idea could also be modification depends on a 

partial replacement of monolith by foam. The structure of the foams enables the flow 

of gas through the bed in all directions what in the case of high temperature 

processes is reflected in better temperature distribution in the cross-section of the 

reactor and better use of the bed to storing the heat released during the reaction. The 

new comparative experiments of thermal combustion of VAM were carried out in a 

tubular reactor with foam bed with similar surface area to that of monolith called as B 

in [4]. The set of experimental parameters were identical to those carried out in the 

monolithic system. It was found that the ignition temperature of the VAM mixture in 

the tested foam bed is almost identical to that determined in the comparable 
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monolith. In the experiments, the combustion zone was assumed as the volume of 

the reactor in which the temperature is higher than the ignition temperature. The 

determination of such a zone was possible by the measurements of the temperature 

along the bed by a moveable thermocouple. The achievement of the temperature 

profile in foam bed similar to that measured in the monolith, was possible for the 

lower furnace temperature, i.e. by about 70 °C. A comparison of the reactants 

content for similar temperature profiles along the combustion zone in foam and 

monolith, showed that the methane conversion is higher in case of the foam bed. It 

was found out that the increase of a furnace temperature by 10 °C has a significant 

influence on methane conversion value. It was also observed that the differences in 

methane conversions between experiments carried out in the foam and monolithic 

bed for the similar temperature profiles, are growing up with the temperature increase 

from 1.5 times for lower temperatures to 5.8 times for higher temperatures. Lean 

methane-air mixtures burn to the same products: CO and CO2 in both variants of the 

bed. Comparison of the products for the similar methane conversion and for similar 

inlet methane concertation, revealed that the combustion process in foam generates 

mainly CO2 with smaller amount of CO what is opposite to results obtained in 

monolith bed. The poster presentation will include the results of experiments, listed 

above, their comparison with monolith bed of the similar surface area and the basic 

properties of the foam used in the experiment. 
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The growing demand for safe industrial processes has led to the development 

and use of environmentally friendly solid catalysts intended for use in acid-catalyzed 

value-added reactions. Acid catalysis is one of the most common processes in the 

chemical industry. Industrially important organic transformations include esterification 

and transesterification, etherification, dehydration, oxidation, acetylation, silylation 

and biodiesel synthesis [1,2]. Solid acid catalysts, known as «green catalysts», are 

used as a substitute for homogeneous acid catalysts. They contain more 

environmentally friendly components, while providing greater activity and selectivity 

compared to existing homogeneous catalysts [3]. An example of a heterogeneous 

catalyst is mesoporous silica – modified SBA-15, which is used in many organic 

reactions.  

The focus of this study was to synthesize a solid acid catalyst based on 

mesoporous silica SBA-15 with incorporated metal Al. By trapping the metal in a 

silicate matrix, the activity and selectivity of the catalyst is improved, it becomes more 

temperature-resistant and has a greater potential for reuse. The synthesized catalyst 

was characterized by nitrogen adsorption-desorption (BET), Fourier transform 

infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light 

scattering (DLS), thermogravimetric analysis (TGA), temperature programmed 

desorption (TPD), and temperature programmed reduction (TPR). Furthermore, 

using this catalyst, a series of oleic acid esterification reactions in methanol were 

carried out with the production of oleic acid methyl ester. All experiments were 

performed in a laboratory batch reactor. The influence of reaction temperature (50, 

55, 60, and 64.5) °C and catalyst mass (0.025, 0.05, 0.1, 0.2 and 0.3 g) on the 

reaction conversion were studied. The reaction efficiency was monitored by 

determining the concentration of oleic acid and methyl oleate using GC-FID. We also 
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checked the loss of catalyst activity after repeated use. The results show that the 

conversion increases with increasing temperature and mass of the catalyst up to 

0.2 g. Further mass increase didn’t result in increased conversion. The study was 

upgraded by determining the kinetic parameters; thus, the Langmuir-Hinshelwood-

Hougen-Watson model was: 

	 	 	 1 	 	  

Table 1. Activation energies at different loadings of the catalyst 

mcat/g 0.025 0.05 0.1 0.2 0.3 

Ea/kJ mol–1 80.3 59.9 52.2 34.9 42.1 

Activation energy decreases with increasing mass of the catalyst up to 0.2 g. 

After further increase of the catalyst mass it slightly increases. This is due to mass 

transfer limitations and possible formation of catalyst aggregates.  

References 

[1] Léon CIS, Song D., Su F., An S., Liu H., Gao J., et al., (2015), Propylsulfonic acid and methyl 
bifunctionalized TiSBA-15 silica as an efficient heterogeneous acid catalyst for esterification and 
transesterification, Microporous and Mesoporous Materials, 204, 218-25.  

[2] Dhainaut J., Dacquin J-P., Lee A.F., Wilson K., (2010),  Hierarchical macroporous–mesoporous 
SBA-15 sulfonic acid catalysts for biodiesel synthesis, Green Chem., 12, 296-303.  

[3] Zheng Y., Li J., Zhao N., Wei W., Sun Y., (2006), One-pot synthesis of mesostructured AlSBA-15-
SO3H effective catalysts for the esterification of salicylic acid with dimethyl carbonate, 
Microporous and Mesoporous Materials, 92, 195-200.  

Acknowledgement 

The authors acknowledge the financial support of the Slovenian Research Agency within the 
bilateral project BI-BA/19-20-046. 



PP-64 

393 

CONVERSION AND PRESSURE DROP IN CATALYTIC 
PARTICULATE FILTERS 

Rudolf Pečinka, Jan Němec, Petr Kočí  

University of Chemistry and Technology,  
Prague Department of Chemical Engineering, 
Technická 5, 166 28 Prague, Czech Republic 

E-mail: petr.koci@vscht.cz 

Catalytic converters and particulate filters are required to meet strict emission 

limits for vehicles with internal combustion engines. The exhaust aftertreatment 

systems can be spacious and expensive. To address these issues, catalytic 

particulate filters have been developed with an active catalytic layer deposited 

directly onto or into the walls of the porous filter substrate. In this way, harmful 

gaseous emissions are eliminated and particulate matter trapped in one device. 

However, the catalytic material has to be properly distributed to achieve a high 

conversion and filtration efficiency while keeping a low pressure drop [1]. 

In this work we present results of lab measurements of several catalytic 

particulate filters with Pt/-Al2O3 catalyst washcoated on a cordierite filter. The 

samples differ in particle size distribution of the coated slurry, which leads to different 

properties and location of the catalytic washcoat in the filter. The samples were 

tested in a lab reactor with the inlet mixture of synthetic gases (CO, O2, H2, C3H6, 

NO, CO2, H2O, and N2) simulating the real exhaust gas. The outlet gas composition 

was analyzed by FT-IR MKS HS 2030 and MS Hiden QGA. Conversion and pressure 

drop of the filters were measured at several different flow rates. 

The obtained results indicate that compact on-wall coating leads to an 

unacceptably high pressure drop. A balanced distribution of the coating onto and into 

the filter wall seems to provide a promising structure for optimum performance of the 

catalytic filter. 
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The concept of hydrogen energy over the past decades has been considered as 

one of the main vectors of development of the energy industry in the future. 

Hydrogen obtained by chemical, physical, and electrochemical transformations can 

become a universal energy carrier, which makes it possible to construct the global 

and local energy supply systems most efficiently, and combine the production, 

transportation, storage, and use of energy by various consumers into a single 

complex. The use of hydrogen in mobile (transport) and stationary power plants will 

largely solve the problem of environmental pollution by fuel combustion products. 

The development of effective and cost-efficient technologies for the production of 

pure hydrogen is one of the fundamental tasks of hydrogen energy. Another 

important aspect, in addition to producing pure hydrogen, is the efficient production of 

electricity. For this goal, proton-ceramic fuel cells (PCFCs) are promising candidates. 

The use of PCFCs makes it possible to obtain electricity with very high efficiency, 

minimal emission, and use hydrogen or hydrocarbons as fuel. 

This work is aimed at studying the features of the formation processes and the 

physical properties of new composite materials for electrochemical devices for 

producing hydrogen and generating electricity. Composites are very difficult objects 

to study since many factors influence their formation and characteristics. The 

development of fundamental ideas about the principles of the formation of composite 

systems and the processes that occur during this process is of great scientific 

importance. The creation of a technology based on the materials under study will 

significantly increase the efficiency of production of pure hydrogen, as well as use not 

only natural gas in hydrogen production, but also exhaust gases from power plants 

and chemical by-products. In electricity generation, composite materials can be used 

in PCTE as electrodes to expand the electrochemically active region and reduce 

polarization losses. 
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The idea of reversed flow non-premixed reactor [1] (Fig.1) promises the a 

substantial enhancement of both the energy efficiency and safety for partial oxidation 

conversion of hydrocarbon gases to synthesis gas. On the example of methane 

CH4 + XO2 + WH2O  mCO + hH2 +mCO + wH2O 

 

 

The thermodynamic model given in [1] predicts for 

established regime of conversion a very high 

efficiency. The preferable embodiment for steam-

oxygen conversion in this case is supply of steam-

methane mixture via the heat exchanger reactor filled 

with a porous heat carrier and injection of oxygen in 

the middle part of the reactor.  

Before this promising approach can become a practical technology, the 

predictions of the thermodynamic model need to be checked both numerically and 

experimentally addressing the following problems, what are the kinetic rate limitations 

on the reactor throughput, what effect has the interphase heat- and mass-transfer, 

how the transients associated with the flow reverse affect the overall performance. 

We used a numerical model previously developed for modeling of premixed air-

steam-methane conversion in a chemically inert porous medium. The one-

dimensional two-temperature (gas/solid) non-stationary model considers 90 reactions 

of 28 reactive species including soot (carbon) formation on the inert solid surface and 

soot reactions with oxygen, steam, and carbon dioxide. Figs. 3-4 show several 
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calculated distributions during first cycles of flow reverse for X = 0.47 and W = 0.49 

These flowrates are close to the limits predicted by the model [1] (See Fig. 2).  

  
Fig. 3. Distribution of gas temperature during first two cycles of flow reverse 

  
 

  
Fig. 4. Snapshots of gas flowrates and soot concentration during the second cycle 

The process is substantially non-stationary. Initially soot accumulates at the side 

where methane is supplied. This accumulated soot is further consumed with the 

excess steam formed as the hydrogen reacts with the oxygen supplied to the center 

of reactor. In several reverses of the flow the process comes to an established cycle. 
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Conversion of various hydrocarbon feedstocks into syngas via partial oxidation 

(POX) in regime of filtration combustion (FC) in inert porous matrix promises 

substantial improvements over conventional methods. To mention a few, heat 

recuperation on the solid matrix providing high energy efficiency, a possibility to avoid 

cocking of a catalyst, omnivorous in feed, a possibility to use air for oxidant.  

 
Predictions of thermodynamic model [1] for  

2-propanol air conversion  

A version of such process, conversion of 

hydrocarbons in a non-premixed moving 

bed FC reactor with fuel supplied to the 

middle part of the reactor to react with 

preheated air flow was proposed in [1]. 

Predictions of [1] (conversion regimes 

and combustion) made with strongly 

simplified model need an experimental 

test. 

 

Experimental setup and temperatures on 
thermocouples 

We used quasi-continuous heat-insulated 65-mm id vertical quartz reactor with a 

rotary grate to controllably discharge granular solid (porcelain Raschig rings) to the 
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discharge bin. The air was supplied from below. Combustion was ignited in the 

reactor on the level of TC3 and 2-propanol was supplied there with a constant supply 

rate ~6 ml/min. The discharge of granular solid was controlled to maintain the 

temperature on TC1 for the established regime at a constant value. Fresh solid was 

charged atop to maintain constant charge level. Syngas was withdrawn from the 

upper part of the reactor and analyzed using a gas chromatograph.  

The experimental procedure was similar to that previously used to gasify 

pulverized coal [2, 3]. The established regimes were studied for varied air flowrates. 

The control of discharge secured solid flowrate equal in heat capacity to that of air 

(transition to intermediate regime in terms of [1]).  

Major characteristics of isopropanol conversion depending on oxygen excess ratio  

 
Concentration of gases, % vol. Qg, 

MJ/m3 
Tc, °С 

CO2 CO O2 C3H6 C2H4 CH4 H2 
0.34 7.47 15.4  4.5 1.8 4.61 3.73 8.64 923 
0.52 8.17 14.2  1.43 1.25 2.19 1.7 4.55 990 
0.61 11.8 13.6  1.21 1.05 1.74 1.11 3.96 1005 
0.80 6.84 9.48 8.29 1.21  0.68 1.1 1.11 2.03 1050 
1.69 2.76 7.53 16.2 0.02  0.15 0.25 0.21 1.10 1070 
1.95 1.8 7.29 17.8  0.02 0.08 0.12 0.11 0.97 1060 

The gas analyses show general qualitative agreement of the trends of 

combustion temperature and gas composition with the predictions of [1]. However, 

the temperature was much lower than that predicted for adiabatic reactor. The gas is 

far from equilibrium and contains light hydrocarbons. Another complication revealed 

was poor gas mixing within porous bed indicated by the quenched combustible 

species in gaseous products for fuel-lean supply ratios. 
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ACID SUPPORTING SINGLE ATOMS CATALYSTS 
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Methane is present in large amounts on the earth, being the main constituent of 

natural gas and coming from many other sources [1]. Moreover, CH4 is a greenhouse 

gas whose negative effects on the environment are over 30 times more potent than 

CO2. More and more attention for fruitful methane oxidation and conversion versus 

an effective utilization and emission reduction is thus desirable. The methane 

combustion produces a smaller amount of CO2 compared to emissions from the other 

fossil fuels, making the use of methane a promising intermediate step before a total 

replacement with renewable sources. On the other hand, methane availability 

encourages for upgrading methane into value-added products, too. However, the use 

of methane as chemical raw materials is still insufficient. Indeed, methane is 

inherently difficult to activate, this is due to its lack of polarity and chemical inertness. 

Moreover, for CH4 conversion to syngas or other products, large scale production 

facilities and/or high temperatures and energy still constitute significant drawbacks. 

Despite its direct transformation, via conventional heterogeneous and 

homogeneous catalysis, has been the object of a lot of studies, it still remains a 

challenge. Electrocatalytic approaches represent promising alternatives [1], 

overcoming the methane chemical inertness thanks to the rapid generation of highly 

reactive species, and supplying partially oxidized stable products at relatively low 

temperatures. 

An efficient catalyst for this process must be able to fulfil different functions: 

activate oxygen; adsorb and activate methane; and, allow the formation of specific 

molecules, avoiding subsequent oxidation. In this scenario, the use of multi-

components, with different functionality to optimize activities, selectivity and costs, is 

the way forward. Supported single-atom metals [2], maximizing atom efficiency 

(activity >1,000 times higher than that of free cations), have been demonstrated 

promising materials for C–H bonds activation. 

Herein, to develop an enhanced catalyst for direct and selective oxidation of 

methane at low temperature, single atoms (Rh, Ir and Ru) dispersed on Al2O3, were 
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prepared. Magnetic resonance imaging was employed to map the solid phase 

distribution of the active component precursors within the support bodies. Brønsted 

acid sites, important for carbonylation reaction and acetic acid yield, were generated 

by NH4BF4 modification. We found that the prepared nanocatalyst can catalyse 

efficiently the selective oxidation of CH4 to acetic acid. 
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Nowadays there is a problem of associated petroleum gas (APG) processing in 

Russia, Nigeria, Saudi Arabia and north states of USA. Typical APG composition is 

(vol. %) 50-70 СН4, 5-10 С2Н6, 10-30 C3+-hydrocarbons (up to octane), 0-10 N2, 0-10 

CO2. Due to the presence of C3+-fraction, APG causes engine damage and therefore 

can not be used as a fuel to generate electricity directly at oil fields. APG also has 

high hydrocarbon dew point and can not be transported by conventional gas 

pipelines. Thus, an alternative way of APG utilization is necessary. 

Low temperature steam reforming (LTSR) of APG represents a promising method 

of APG utilization. The process occurs at 250-350 °C and low steam to carbon ratio 

(H2O/CC2+ mol. < 1). Overall process can be described by two reactions: irreversible 

steam reforming of C2+-hydrocarbons with the formation of CO2 and H2 followed by 

reversible CO2 methanation: 

 CnH2n+2 + 2nH2O → (3n+1)H2 + nCO2  (n > 1) (1) 

 CO2 + 4H2 ⇄ CH4 + 2H2O (2) 

It was shown that catalyst activity is proportional to metallic Ni available surface 

area. Conventional Ni-based natural gas steam reforming catalysts with Ni loading of 

10-15 wt. % have got too low Ni surface area and are not appropriate for the 

reaction. Industrial Ni-based methanation catalysts with Ni loading of 30-50 wt. % 

demonstrate sufficient activity in the process. But they however suffer from 

complicated activation procedure, pyrophoricity and insufficient thermal stability. 

Thus, there is a need for development of highly active Ni catalysts with moderate Ni 

loading, which will simplify activation/passivation procedure, i.e. high Ni dispersion is 

required. 

In the present work we proposed Ni/Ce0.75Zr0.25O2 (further X % Ni/CeZr) prepared 

via incipient wetness impregnation by water-glycol solution of Ni(II) nitrate. Catalysts 

demonstrated high Ni dispersion (Table 1) which kept unchanged after catalytic tests. 

Catalysts were studied in LTSR of model propane-methane mixture and compared 
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with industrial Ni-Ref and Ni-Meth catalysts (Fig. 1). It is seen, that all Ni/CeZr are 

more active than industrial catalysts despite much lower Ni content. 

High activity of Ni/CeZr catalysts was attributed to high Ni dispersion (Ni particle 

size is 5-10 nm according to TEM data not presented here) which was provided by 

preparation technique and strong metal-support interaction between Ni and ceria-

zirconia. 

Table 1. Physical chemical properties of the catalysts 

Catalyst Ni, wt.%  SBET, m2/g SNi***, m
2/gcat 

5% Ni/CeZr 4.7 80 4.0 

9% Ni/CeZr 9.1 78 7.3 

12% Ni/CeZr 12.2 70 5.8 

15% Ni/CeZr 15.9 71 7.4 

Ni-meth* 40 137 3.3 

Ni-Ref** 15 15 0.6 

*Industrial NIAP-07-05 methanation catalyst. 
**Industrial AlfaAesar R110 natural gas reforming catalyst. 
***According to CO chemisorption for the used catalyst. 
 

 

Fig. 1. Temperature dependencies of propane outlet concentration (on dry basis) for steam reforming. 
Inlet gas mixture (vol. %): 54 CH4, 6 C3H8, 40 H2O. P = 1 bar, GHSV = 3000 h–1 
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Belyaev V.D.2,3, Sobyanin V.A.2,3, Nemudry A.P.3 
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Solid oxide fuel cells (SOFC) are considered as the most efficient systems for the 

electric power generation from conventional hydrocarbon resources (natural gas, 

liquefied petroleum gas, jet fuel or diesel). Microtubular (MC) SOFCs are of great 

interest for portable applications due to availability of small power units and fast start 

up. To provide stable SOFC operation, initial fuel, before feeding to the SOFC anode, 

should be converted in a fuel reformer to synthesis gas with high content of 

hydrogen. Catalytic partial oxidation (CPOX), steam (SR), or autothermal reforming 

(ATR) are the most appropriate reactions for this purpose. The optimum temperature 

for these reactions ranges 550-900 °C; it falls within the SOFC working temperature 

interval. 

Liquified petroleum gas (LPG) is a primary choice for portable applications as it is 

widely available and easily transportable fuel with high energy density. LPG CPOX is 

an attractive route of syngas production for MC SOFCs feeding due to high 

performance, application of air as a reagent and exothermicity of the reaction. CPOX 

process couples highly exothermic reactions of hydrocarbons total oxidation and 

endothermic reactions of hydrocarbons steam reforming. To provide high 

performance in CPOX the catalyst has to combine high activity, stability and heat 

conductivity. 

Composite 0.24 wt. % Rh/(12 wt. % Zr0.25Ce0.75O2–--Al2O3)/FeCrAlloy catalyst 

was suggested for LPG CPOX. It was tested in LPG CPOX at 850 °C (measured at 

the surface of catalyst module outlet) at GHSV 40000-80000 h–1. During the 

experiments the temperature at the surface of the catalyst module inlet ranged 950-

960 °С. The main products were H2, CO, CO2, and N2, which concentrations were 

close to equilibrium values at GHSV up to 80,000 h–1. C4H10 was not observed in the 

outlet gas mixture, while the concentrations of C3H8 and CH4 increased from trace 
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MODULE: TOWARD ENHANCED EFFECTIVITY OF AROMATIC 
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Shilov V.A.1,2, Snytnikov P.V.1,2, Zagoruiko A.N.2, Sobyanin V.A.2 

1Novosibirsk State University, Novosibirsk, Russia, natavruban@gmail.com 
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Nowadays fuel cells are one of the perspective ways towards green energy. 

Hydrogen is often used as a fuel for fuel cells. This choice of fuel is due to the purity 

and uniformity of hydrogen fuel and leads to a stable working process of the system. 

On the other hand, liquid products of the oil industry – gasoline and diesel – are more 

convenient in the case of transportation and storage. Based on the above cases 

optimal decision will be reforming of liquid fuels immediately before the start of working 

cycle of fuel cells [1]. Currently, only 16 % of global hydrogen production is produced 

from liquid fuels. According to these facts’ development of highly-efficient catalysts for 

reforming of diesel and gasoline to syngas is an actual and important task. 

In the previous work [1] it was shown that the catalytic module 

Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl was very effective in the case of ATR conversion of 

hexadecane and isooctane, but unconverted liquid oily residues were observed in the 

cases of commercial diesel fuel and gasoline. Compositions of the oily residues were 

studied by GC MS and was shown that the unreacted mixtures mainly consist of 

mono- and diaromatic compounds. To understanding processes inside the catalytic 

module, the calculations of reforming parameters of the model mixture were 

conducted by COMSOL Multiphysics software. According to the calculation data, the 

most part of hexadecane together with the whole oxygen in the mixture were 

converted in the front zone (up to 1/3 of length) of the catalytic module. In the middle 

and end zones of the catalytic module, the steam reforming processes of less-active 

components (aromatic compounds) prevailed. 

Modifications of the catalytic module in the goal of enhancing of activity in the 

steam reforming processes of aromatic compounds were conducted. There are two 

ways for modification: active metal and composition of support. In the literature the 

positive influence of presence lanthanoid oxides in support composition to resistance 

for coke formation and stability of catalysts in autothermal reforming of hydrocarbons 

was reported [2], [3]. On the other hand, the high efficiency of Ni-based catalysts in 
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ATR of aromatic compounds was reported too [4]. Firstly, the composition of 

supported oxides was changed. The GdO2 was added to the composition of the first 

layer of support to obtain Ce0.75Zr0.2Gd0.05O2 mixed oxide. According to the second 

way Ni particles stabilized by MgO were added in the composition of active metal 

layer (4 wt. % of each component). The modified catalysts were tested in the 

autothermal conversion of hexadecane and model blends of hexadecane with 

aromatic compounds. Both modifications were very promising in the case of 

hexadecane (75 %) – o-xylene (20 %) – naphthalene (5 %) blends: product 

distribution was close to equilibrium, C2+ hydrocarbons concentration were smaller 

than 1 % and full conversion of fuel was observed. Modified catalysts were more 

active than initial catalyst in ATR of the same blends in the same conditions: more 

than 2 % of C2+ hydrocarbons in outlet gas products and ~90 % of fuel conversion 

was observed in the case of Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl (Table 1). 

Table 1. Products concentration in ATR of model blend hexadecane (75 %) –  
o-xylene (20 %) – naphthalene (5 %) in presence of different catalysts 

Catalyst composition 
Product concentrations, vol.% 

Xfuel H2 N2 CO CH4 CO2 

Equilibrium 41.8 33.3 11.8 0 12.5 100 

Rh/Ce0.75Zr0.25O2/Al2O3/ 
FeCrAl 

30.1 40.1 12.1 1 8 80 

Rh/Ce0.75Zr0.2Gd0,05O2/Al2O3

/FeCrAl 37.5 38.8 9,6 0 13.2 99.5 

Rh/Ni-MgO/ 
Ce0.75Zr0.25O2/Al2O3/FeCrAl 34.6 37.9 12.4 0.5 11.4 100 
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A kinetic scheme of radical chain reactions in autocatalytic pyrolysis of propane 

was studied using a sensitivity analysis method, bringing in the experimental data.  

In the gas-phase kinetic experiments, propane pyrolysis was carried out in 

laboratory reactors with the reaction mixture heated by CO2 laser irradiation [1,2]. 

Due to a large number of parameters affecting the yield of products, investigation of 

this process is based not only on experiments but also on numerical modeling of the 

dynamics of chemically active gas in a laboratory reactor by means of the Ansys 

Fluent software. The reduced (compact) kinetic schemes describing the most 

essential aspects of the mechanism of a chemical process are needed for such 

simulations. Note that the inclusion of chemical reactions in non-stationary numerical 

model even as gross schemes significantly increases the computational costs. 

However, in the majority of studies, gross schemes cannot satisfactorily describe 

spatial distribution of chemical reactions with the radical chain mechanisms over the 

reactor. On the other hand, the detailed mechanisms, which include hundreds of 

elementary steps, lead to unacceptable calculation time of 3D problems even on 

advanced supercomputers. Thus, creation of reduced schemes for pyrolysis of 

hydrocarbons is an important problem [3]. The reduction of detailed schemes implies 

a replacement of the initial system by a system with a lower dimensionality, which is 

equivalent in some respect to the initial system, or specifically, describes the 

changes in concentrations of the target substances for the modeled process in a 

similar way. The dimension of the compact scheme (the one resulting from the 

reduction) is defined by a range of conditions (temperature, pressure, response time) 

within which it is required to adequately describe the yield of the target monitored 

substances.  

We have developed a procedure for constructing reduced schemes of chemical 

reactions predicting the concentrations and the major yields of reactions with the 

desired accuracy and requiring moderate computing resources [4]. The efficiency of 
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using this procedure was demonstrated for modelling propane pyrolysis using 

detailed and reduced schemes. The reduction of the 157 reactions in the detailed 

propane pyrolysis scheme to the 30 reaction scheme was carried out using this 

procedure. The stages which may be excluded from the scheme are identified on the 

basis of the Sobol's variance based strategy applied for the sensitivity analysis 

evaluation. The reduced kinetic model of low-temperature pyrolysis of propane is 

proposed. This model adequately describes the yield of the reaction products in the 

temperature range 820-980 K at atmospheric pressure. The dynamics of the propane 

pyrolysis gas flow was calculated for the laboratory reactor and taking into account 

the diffusion processes, thermal effects of the reaction and other thermal processes 

in the reactor using ANSYS Fluent software package including the newly developed 

kinetic model.  
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continuously bubbled through the liquid phase. High stirring rates and gas flows were 

used to ensure the operation within the regime of kinetic control. Acetic acid was 

used as the homogeneous catalyst and the reaction temperature was varied between 

70-100 °C. All the experiments were conducted under atmospheric pressure. A 

hypothesis on the reaction mechanism was presented, based on the existence of 

esters and epoxides as reaction intermediates. An improved gas-chromatographic 

method was developed to analyze the esters quantitatively. The kinetic experiments 

revealed that a considerable fraction of the acid catalyst is bond to glycerol and the 

-hydrochlorinated reaction product, particularly at high catalyst concentrations. 

Inspired by this observation and a previously proposed mechanism for glycerol 

hydrochlorination, new kinetic equations were derived. Examples of the rate 

equations leading to the formation of the - and -chlorinated products are shown 

below,  

 	
	 	

	 	
	

	

	 	

	
		 	

  (1) 

 	
	 	

	 	
	

	 	

	
		

  (2) 

The reactor vessel was described as a completely backmixed stirred tank, which 

resulted in a set of ordinary differential equations which were solved numerically. The 

new kinetic model was tested with the experimental data and it was confirmed that 

the rate equations are able to describe the experimental observations even at high 

catalyst concentrations. The new model reduces to the previously proposed kinetic 

model at low catalyst concentrations. 
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DFT STUDIES ON THE MECHANISM OF THE Ru-MACHO-
CATALYZED GUERBET REACTION OF ETHANOL TO BUTANOL 

Manuel Sanchez, Marcel Liauw 

RWTH Aachen University, Institut für Technische und Makromolekulare Chemie 
(ITMC), Worringerweg 1, 52074 Aachen, Sanchez@itmc.rwth-aachen.de 

The use of bioethanol is of high interest for the chemical industry and research 

due to its sustainability [1]. It is already used as a fuel additive (E10 fuels), but there 

are some issues. It has a lower energy density than regular fuel (around 70 %), is 

water miscible, and corrosive towards modern combustion engines [2]. The catalytic 

conversion of (bio)ethanol to (bio)butanol, e.g., via the Guerbet reaction leads to 

better additive properties (90 % energy density of regular fuel, immiscibility with 

water, non-corrosive against combustion engines) [2]. In the first step of the Guerbet 

mechanism a redox catalyst reduces a primary alcohol. The formed aldehyde reacts 

to an ,-unsaturated aldehyde via an aldol condensation under basic conditions. 

The aldehyde gets hydrogenated to a longer primary alcohol in a last step. The 

Guerbet-reaction is an example of hydrogen-borrowing chemistry, as the hydrogen 

formed in the first reaction step is used for the hydrogenation of the aldehyde in the 

last step. The conversion of ethanol to butanol following the Guerbet mechanism  

still has major issues in terms of yields and selectivity. Previous internal  

studies with the Ru-MACHO catalyst (Carbonylhydrido(tetrahydroborato)-[bis(2-

diphenylphosphinoethyl)amino] ruthenium (II)), including experimental data and 

microkinetic simulation, showed, that the named catalyst only performs the 

conversion from ethanol to 1-butanol poorly and found, that acetate and 

acetaldehyde oligomers are formed as side products. The reaction network can 

metaphorically be described as a 2D-ball-in-a-maze (see figure 1) with two axes of 

rotation, where a variation of the reaction parameters leads to tilting the maze. The 

product is determined by the point where the ball stops. “Playing” the game for 

multiple times leads to a product distribution [3]. After exploring the formation of  

2-butanol in addition to 1-butanol in recent studies, the reaction system was 

optimized in batch experiments leading to an overall yield of 62 % butanol (55 % of  

1-butanol and 7 % of 2-butanol). In search for sustainable fuel additives the selective 

synthesis of 2-butanol would be an improvement to 1-butanol due to its higher anti-

knock characteristics. 
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INVESTIGATION OF Pd-Bi/Al2O3 CATALYSTS IN THE REACTION  
OF LIQUID-PHASE GLUCOSE OXIDATION 

Sandu Mariya Petrovna, Kurzina Irina Aleksandrovna 

Department of Physical and Colloid Chemistry, National Research Tomsk State 
University; Russian Federation, 634050, Tomsk, 36 Lenin Ave., 

mpsandu94@gmail.com 

The use of renewable sources as feedstock is associated with the economic 

efficiency of the chemical industry [1]. In particular, carbohydrates are indicated as 

raw material, given their wide availability and high degree of complexity. The great 

commercial interest for gluconic acids and its relative salts, is due to their wide use 

as chelating agents of water-soluble cleaners or additives for food and beverages, 

the component of tablet dosage forms and the acidity regulator of cosmetics [2]. 

Gluconic acid and its derivatives are obtained by the enzymatic treatment of 

carbohydrates at present. However, this method has a lot of disadvantages such as 

separation of product, waste removal, low yield of the desired product, inability to 

reuse enzymes and, finally, dangerous consequences for the environment [3]. An 

alternative method of producting gluconic acid, which eliminates these 

disadvantages, is the oxidation of carbohydrates by molecular oxygen in the 

presence of bimetallic catalysts supported on a carrier stable in an aqueous medium. 

Palladium-based catalysts promoted by various metals proved to be effective. The 

performance of bimetallic palladium catalysts is associated with the occurrence of 

electronic interactions between palladium and the promoter and disappearance of  

–PdH. However, the question of the influence of the catalyst preparation method is 

still debatable [4]. 

The present work deals with the preparation and characterization of alumina-

supported bimetallic catalysts obtained according to two  experimental procedures, 

and tested for their catalytic performances towards the  reaction of glucose oxidation 

to form gluconic acid.  

A catalyst PdBi/Al2O3 was prepared from organic solution of Pd(acac)2 and 

Bi(ac)3 by co-impregnation of alumina. A Pd→Bi/Al2O3 catalyst was prepared from an 

organic solution of Pd(acac)2 and aqueous solution of Bi(NO3)3·5H2O by successive 

impregnation of the support. The total metal content on the surface of the catalysts 

was 2.6 %. The atomic ratio Pd / Bi = 2. The particle size distribution and the local 
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chemical composition of the nanoparticles were determined by transmission electron 

microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX). The bimetallic 

nanoparticles for sample Pd→Bi/Al2O3 have a narrow size distribution (1–9 nm) with 

average particle size of 4 nm. In the case of nanoparticles in PdBi/Al2O3 the size 

distribution is broader (1–16 nm). Actually, together with smaller particles distribution, 

a few larger particles (> 35 nm) also exist.  

Electronic properties of Pd and Bi on the Al2O3 support were investigated by 

XPS. It was shown that the fraction of metals on the surface of the Pd→Bi/Al2O3 

catalyst is in the form of PdO. At the same time, palladium is less oxidized than 

bismuth. It was observed that palladium and bismuth in the composition of the 

PdBi/Al2O3 catalyst are oxidized in approximately equal proportions.  

The prepared catalysts PdBi/Al2O3 and Pd→Bi/Al2O3 were tested in the reaction 

of liquid-phase oxidation of glucose to gluconic acid. Oxidation of glucose solution 

(0.6 mol/l) carried out in a thermostatic glass reactor with a volume of 25 ml, 

equipped with a stirrer, an oxygen supply system, a peristaltic pump, supplying 

NaOH (3.00 mol/l) and a pH electrode. Acids from the oxidation of glucose were 

neutralized by the addition of an aqueous solution sodium hydroxide to maintain a 

constant pH = 9 in reaction medium. The reaction was carried out for 110 min. The 

highest yield and selectivity of gluconic acid (approximately 95 %) were achieved in 

the presence of a PdBi/Al2O3 catalyst. This observation is due to the fact that, in the 

case of preparation of the catalyst by co-impregnation, bimetallic structures with less 

oxidized bismuth are formed compared to the catalyst sample Pd→Bi/Al2O3. Bismuth 

in the composition of the bimetallic particle PdBi improves the electronic properties of 

the catalyst, preventing oxidation of active component Pd and providing high values 

of the yield product and selectivity of the desired product, according to the oxidative 

dehydrogenation mechanism proposed by the authors [5]. 
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SIMULATION OF THE PHENOMENON OF THE BIRTH OF WEAK 
SHOCK WAVES IN THE OXIDATION OF HYDROGEN AND 

HYDROCARBONS AT THE PRESENCE OF SURFACE ACTIVE 
CENTERS (WATER + NEGATIVE ION OF CHLORINE) 

Sargsyan G.N. 

Institute of Chemical Physics, A.B. Nalbandyan National Academy of Sciences of the 
Republic of Armenia, Yerevan, 0014, st. P. Sevak, 5/2, E-mail: garnik@ichph.sci.am 

The phenomena of self-organization (synergetic), in particular, periodic changes in 

characteristics (concentration, temperature pressure, pulsating intensification of light 

emission, etc.) during chain reactions are of interest both for understanding the 

mechanism of these reactions and for the safety of carrying out chemical processes 1. 

As is known, external factors are playing an important role in such processes – 

the so-called slow subsystems, which can be as energy exchange through the walls 

of reaction vessels, and relaxation of internal energy, and other characteristic. 

In this work, we consider the effect of surface active centers (by the example of 

adsorbed on the surface complexes of water molecules with a negative halogen ion) 

as a source of formation of weak shock waves.  

Light radiation of shock front products excited to metastable levels presented 

itself in the form of pulsations of light emission in particularly in the infrared region of 

the spectrum, which we observed in our study of the oxidation of propane. 

The basis of the model is the processes that lead to the transformation of the 

intermediate product of the above reactions of H2O2 into ozone O3 molecules, the 

self-decomposition or reaction of which leads to the release of a large amount of heat 

in the local place of the reactor (places of concentration of water + negative halogen 

ion complexes) due to the chain of processes 1: 

H2O2 + H2OCl–  H2OO– +H2OCl, H2OO– + O2  H2O +O3
–, O3

– + H2OCl  

O3 + H2OCl–. In the first elementary act there exist the possibility of resonance. 

Due to the release of a large amount of energy in a local place of the near-

surface layer of the reactor, as a result of which brings to formation a fast flow to the 

center of reactor. 

It is better to consider this problem in terms of Hugionio theory, as was first done 

by R. Becker [2]. 
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Based on the equation of state of an ideal gas, in dimensionless variables, the 

adiabates of Hugionio are written as [3]:  

M(V,T) = T/V + V – 1 (2) 

L(V,T) = T/–1 – 1/2(V–1)2 –  

where, V – flow volume; T – temperature;   cp/cv – heat capacity ratio;  – flow 

constant. 

If the parabolas M (V, T) = 0 and L (V, T) = 0 in the phase space (V, T) intersect 

at two points, then a shock wave can be generated in the system. 

As the calculation results show within the limits of the Gugionio theory (see  

Fig. 1), there is an intersection of the adiabates of Hugionio fo the cases of propane 

oxidation and hydrogen oxidation. 

T T 

 V  V 
 a  b 

Figure 1. Mutually location of the adiabates of Hugionio on the phase plane (V, T) calculated by the 
formula (2) is presented. a – propane oxidation; b – H2 oxidation 

The intersection of the adiabates of Hugionio at the values of the parameters 

obtained above proves the possibility of the creation of a weak shock wave. 
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MODELLING METHANOL TO FORMALDEHYDE OXIDATION 
PROCESS IN THE ENVIRONMENTALLY SAFE MICROSTRUCTURED 

SLIT-TYPE REACTOR 

Sheboltasov A.G.1,2, Vernikovskaya N.V.1,2, Chumachenko V.A.1 

1Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia 
2Novosibirsk State Technical University, Novosibirsk 630073, Russia 

artemsheb@mail.ru 

Unlike tubular reactors, microchannel reactors (MCR) are distinguished by more 

intense heat and mass transfer, which provides better heat removal from the reaction 

zone; in addition, the effective mixing of reagents reduces the risk of flames. 

Oxidation of methanol to formaldehyde is a strongly exothermic process that can be 

carried out in MCR at higher methanol loads than in conventional tubular reactors [1]. 

This will increase the formaldehyde productivity of the catalyst, while ensuring the 

operational safety.  

In our previous work [2], we studied the process of methanol to formaldehyde 

oxidation in a slit-type MCR, assuming that all the channels operate under the same 

thermal conditions; the model described a single channel surrounded by catalytic 

plates. However, when modelling the process in the MCR formed as a disk with the 

parallel catalyst-filled channels, we found [3] that the channels operate under 

different conditions. The mutual influence of the processes occurring in the channels 

with the catalyst and in the metal disk was shown.  

The present paper focuses on the simulation of methanol to formaldehyde 

oxidation in the slit-type MCR, consisting of 5 porous plates 40 mm long, each plate 

containing 4 channels 0.4 mm high and 5 mm wide, see Fig. 1. Finely dispersed 

particles of industrial Fe-Mo catalyst are evenly distributed within the porous matrix.  

 

Fig. 1. The layout of the computational domains 

The stationary three-dimensional 

mathematical model describes the 

processes in two computational domains 

and at the boundaries (Fig. 1). In the 

Domain I (the reaction mixture in the 

channels), axial heat and mass 

convection and axial thermal conductivity 

and diffusivity are taken into account. 
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In the Domain II, catalytic conversion of methanol to formaldehyde and by-

products, reaction heat release, and thermal conductivity in transverse and axial 

directions are taken into account. Heat and mass exchange between the Domains I 

and II are taken into account at the boundary B1. A constant temperature equal to the 

temperature of the cooling agent is set at the boundary B2. 

The modelling was done using the COMSOL Multiphysics software package. To 

check the adequacy of the mathematical description of the methanol to formaldehyde 

oxidation in a slit-type MCR, the simulation results were compared with experimental 

data. The simulated and observed results agreed sufficiently, this validates the 

modeling approach and demonstrates the model’s ability to predict the values of 

temperature, conversion and yield in each specific channel. 

In the modeling, we fixed the inlet methanol concentration of 6.5 or 12 vol. %, the 

O2/CH3OH ratio was 1.5. The temperature of cooling agent varied from 240 to 

340 °C, the linear gas velocity from 0.1 to 0.35 m/s, and the thermal conductivity of 

the plates from 2 to 10 W/(m K). The influence of the parameters on the methanol 

conversion and formaldehyde yield at the reactor outlet, and on the maximum 

temperatures in the central and peripheral channels was studied.  

At the cooling agent temperature of 340 °C, the linear velocities of 0.1-0.15 m/s 

and methanol concentrations of 6.5 and 12 %, the methanol conversion and the 

formaldehyde yield are higher than 88 and 80 %, respectively. In this case, the 

formaldehyde productivity per unit volume of Fe-Mo oxide catalyst shall be 1.5−3.0 

times higher than in a conventional tubular reactor on the Fe-Mo oxide catalyst, with 

no catalyst overheating. 
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Fig. 1.  Wing catalytic carrier:  
A – metal carrier side view,  

B – Polymeric carrier top and back  
view, aerofoil shape marked with 

dashed line 

NEW STREAMLINED CATALYTIC CARRIERS OF ENHANCED 
TRANSPORT PROPERTIES: EXPERIMENTS VS. CFD 

Katarzyna Sindera1*, Mateusz Korpyś1, Marzena Iwaniszyn1,  
Anna Gancarczyk1, Mikołaj Suwak1, Andrzej Kołodziej1,2 

1Institute of Chemical Engineering, Polish Academy of Sciences,  
Bałtycka 5, 44-100 Gliwice, Poland 

2Faculty of Civil Engineering and Architecture, Opole University of Technology, 
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Dangerous atmospheric pollutants cause serious problems concerning 

environment and public health [1]. So far, the most effective remedies for majority  

of air pollutants are catalytic processes like catalytic combustion [2]. Great 

achievements have been made in the field of catalyst microstructure  

and composition, but the design of the catalytic converter has not changed 

significantly. Up to now, reactor fillings of intense heat/mass transfer display large 

flow resistance, and vice versa (e.g. packed bed vs. monolith). 

The main task of this study is a new generation 

of structured reactor internals (catalyst carriers) 

called “streamlined" or "wing" structures (Fig. 1). 

They are similar to short-channel structures (short 

monoliths of diverse cross-sectional channel shape, 

for more details see [3, 4]). The main innovation is 

channel wall shaped as an aircraft wing.  

The streamlined structures of triangular shape 

and 3, 6 and 12 mm long were created and 

analyzed with Ansys CFD (Computational Fluid 

Dynamics) software. Then, they were 3D printed. 

Finally, experimental investigation of their heat 

transport and flow resistance was performed. The 

novel structures display improved heat/mass 

transfer properties in comparison to monolith and beneficial pressure drop (see Fig. 

2). The channel length L (within single structure) can be regulated to attain 

appropriate heat/mass transfer coefficients, similarly to the short monoliths studied 
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before [3, 4]. The experimental results are in good agreement with CFD ones 

(maximum relative error does not exceed 26 %).  

  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Transport – flow properties of strealmined catalytic carrier in comparison to packed bed and 
monolith [5, 6]: A – Nusselt number Nu vs. Reynolds number Re, B – ΔP/L presure drop per unit of 

structure length vs. superficial fluid velocity w0; dp – grain diameter 
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We present semi-analytic approaches for solving two-point boundary value 

diffusion-reaction problems for catalytic pellets in the case of power-law reaction 

kinetics with fractional exponent and fast diffusion by considering the presence of 

external mass resistance. In this work we extend our analytic approach [1,2,3] to the 

model problems with non-linear diffusion. The dimensionless steady-state mass 

balance for a single n-th order chemical reaction and diffusion in the catalytic pellets 

of planar geometry is given by 

    
2

2
2 0md

c
x

c
d

r   with 
, 0,

( )
0, 0,

nc c
r c

c

 
 


 (1) 

where the reaction term, ( )r c , corresponds to the power-law kinetics, m  stands for 

the diffusion exponent, and  0   denotes the Thiele modulus. We consider the 

physical solutions that satisfy 0 ( ) 1c x   for all 0 1x   and fulfill the boundary 

conditions 

 
    1 1 1

m

m

dc
Bi c

dx
      and     0 0

mdc

dx
 . (2) 

For certain combinations of the pellet size, effective diffusivity, mass transfer 

coefficient, bulk reactant concentration, reaction order and reaction rate constant, the 

exponent 0m  , the dead zone of length dzx  can be formed close to the pellet center. 

In this case the rate of the reactant supply by nonlinear diffusion flux through the 

pellet porous structure is much lower than the rate of the reactant consumption by 

reaction. In the dead zone, the reactant vanishes and the reaction ceases, i.e., 

( ) 0c x   in the pellet region dz0 x x  , where the location of dzx  is a-priori not known.  

We study two families of solutions to the boundary value problem (1)-(2). One 

class of solutions exhibits dead cores which appear if the Thiele modulus exceeds its 
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critical value *  depending on the reaction order n , Biot number mBi  and 

1 0m n   , whereas the other class of solutions does not possess dead-cores if the 

Thiele modulus does not exceeds its critical value * . The class of dead-core 

solutions is separated from the class of non-dead-core solutions by the solution for 
*  which will be derived analytically. In the case of 1m   we show that we recover 

results from [3]. The effects of process parameters on the concentration profiles and 

formation of dead-cores are illustrated numerically.  
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The steadily increasing demand for motor fuel, the depletion of crude oil reserves, 

the decline in the quality of produced oil, and the environmental problems associated 

with the emission of greenhouse gases into the atmosphere lead to the need to 

replace fossil fuels with alternative, environmentally friendly energy resources, which 

include biomass. The existing liquid fuels from biomass (including bio-oil and 

biodiesel) do not always have good miscibility with petroleum fuels and require 

additional modification to meet fuel standards. This modification consists in the 

removal of oxygen and isomerization of the resulting hydrocarbons in the presence of 

hydrogen (the so-called hydrotreatment). Typically, the same conditions and 

catalysts are used in the hydrotreatment of fuel from biomass as in the 

hydrotreatment of oil fractions (hydrodesulfurization, hydrocracking, 

hydroisomerization). Therefore, the integration of biofuel hydrotreatment processes in 

the existing technology of hydrotreatment of oil fractions is one of the promising 

directions for the production of liquid motor fuel. 

Co-processing of biogenic raw materials and oil fractions has recently become 

increasingly important. This process includes cracking, hydrogenation, hydrotreating of 

renewable and mineral feedstock for the production of gasoline, kerosene and diesel 

hydrocarbons. To date, the co-processing of oil fractions and biofuels is carried out in 

three main directions: 1) hydrotreatment of diesel fuel and vegetable oils;  

2) hydrotreatment of gas oil and bio-oil (pyrolysis liquid or liquid products of 

hydrothermal wood processing); 3) hydrocracking of vacuum gas oil and bio-oil. The 

use of large amounts of hydrogen gas and high temperatures, as well as the rapid 

deactivation of catalysts, which affects the cost of the final product, are the main 

problems of the existing approaches. Solving these problems is one of the most urgent 

tasks of the researchers. In order to decrease the cost of hydrotreatment processes, it 

is proposed to use supercritical solvents, which, in addition to reducing the temperature 

of the process, are donors of atomic hydrogen and, thus, are able to decrease the 

consumption of hydrogen. 
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Currently, there are several works on deoxygenation of components of vegetable 

oils and bio-oil using supercritical solvent, such as water, hexane, propane, carbon 

dioxide [1-3]. The most optimal solvent, according to the literature [1, 3], is hexane, 

as it allows the process to be carried out under relatively mild conditions and mixes 

well with the substrate under normal conditions. 

Catalysts used in hydrotreatment are divided into two types: 1) transition metal 

compounds (sulfides, nitrides, phosphides) deposited on aluminum oxides, silicon or 

zeolites, and 2) noble and rare earth metals (Pt, Pd, Re, Rh) deposited on carbon or 

oxide supports. The main disadvantage of existing catalysts is the restriction of 

adsorption of large molecules of the feedstock, which leads to a decrease in the 

activity of catalysts, as well as the behaviour of secondary processes such as 

cracking, which leads to a loss of selectivity and low yields of products. Also, such 

catalysts are easily carbonized, thereby losing their activity during prolonged use. 

Hydrothermal synthesis is one of the ways to solve such problems. This approach 

allows ultrafine crystalline metal oxides to be obtained from their inorganic salts, and 

does not require additional calcination [4-6]. 

In this work, we study the joint conversion of model compounds of biomass (bio-

oil and fatty acids) and petroleum fractions in the medium of complex supercritical 

solvent (hexane-propanol-2). The influence of solvent composition as well as the 

presence of hydrogen was investigated. The process was carried out in the presence 

of transition metal catalysts deposited on the polymeric matrix of hypercrosslinked 

polystyrene in the medium of subcritical water. 
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reactant was observed. The local reaction conditions were manipulated for the 

purpose of each stage.  
Table 1. Reaction conditions for three stages using multifunctional catalyst A 

Stage Condensation Hydrogenation Hydrodeoxygenation 

Reactant 
 

 

Product 

 

Reaction 
temperature (°C) 

80–100 150–200 250–300 

Reaction pressure  
(bar) 

100 100 100 

Using single catalyst for three different stages, we observed the successful 

production of hydrodeoxygenated hydrocarbons. Acidic and hydrogenating properties 

of multifunctional catalyst were observed using acid titration, NH3-TPD, H2-TPR, and 

other characterization methods, which confirmed the presence of catalytic activity 

depending on the reaction conditions of each stage. 
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HIGH EFFECTIVE BIOCATALYTIC SYSTEMS ON THE BASE OF 
HORSERADISH PEROXIDASE IMMOBILIZED ON MAGNETIC 

NANOPARTICLES 

Grebennikova O.V., Sulman A.M., Matveeva V.G., Sulman E.M. 

Tver State Technical University, Tver, 170026, Russia, matveeva@science.tver.ru 

In recent years, the use of enzymes in industrial processes has increased 

dramatically, due to their effective catalytic properties. However, when using 

biocatalytic systems based on enzymes, there is a problem of their regeneration and 

reuse. To solve this problem, scientists use the immobilization of enzymes on various 

supports [1]. 

In this work, horseradish root peroxidase (HRP) was immobilized on magnetite 

(Fe3O4) nanoparticles. The synthesized biocatalyst was tested in the oxidation reaction 

of 2,3,6-trimethylphenol with hydrogen peroxide.  

The synthesis of magnetic nanoparticles was carried out by the polyol method and 

the co-precipitation method. Nanoparticles synthesized by the co- precipitation method 

had granular heterogeneity and large size distribution. Nanoparticles synthesized by 

the polyol method formed large clusters with an average diameter of 111 nm, 

consisting of small nanoparticles. In this regard, nanoparticles synthesized by polyol 

method were chosen as a support for peroxidase, since their morphology is more 

regular, representing a properly formed sphere. 

For strong binding of magnetic nanoparticles to the enzyme, Fe3O4 was treated 

with 3-aminopropyltriethoxysilane (APTS) of different concentrations (1, 2, 3 mg/mL). 

Experiments have shown that the concentration of APTS 2 mg/mL was optimal, since 

at this concentration the maximum yield of the product is achieved. Further, the 

nanoparticles coated with APTS were treated with HRP solution with an optimal 

concentration of 0.15 mg/mL. To characterize the synthesized biocatalyst, the following 

physical and chemical analysis was performed: transmission electron microscopy, IR-

Fourier spectroscopy, magnetic characteristics study using a vibration magnetometer, 

x-ray photoelectron spectroscopy and low-temperature nitrogen adsorption. 

The optimal oxidation conditions of 2,3,6-trimethylphenol, namely the initial 

concentration of the substrate (1.5 mmol/l), pH (6.5) and temperature (40 °C) were 

also selected.  
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KINETICS OF PELARGONIC ACID ESTERIFICATION WITH  
2-ETHYLHEXANOL IN BATCH AND CONTINUOUS REACTORS 

Riccardo Tesser1, Francesco Taddeo1, Vincenzo Russo1,2, Rosa Vitiello1,  
Rosa Turco1, Martino Di Serio1 

1Università degli Studi di Napoli Federico II, IT-80126 Napoli, Italy, 
riccardo.tesser@unina.it 

2Åbo Akademi, FI-20500 Turku/Åbo, Finland 

Esterification of carboxylic acids with alcohols is commonly catalyzed using 

soluble acids, such as sulfuric acid and p-toluenesulfonic acid. These catalysts are 

characterized by high activity, but they show several negative aspects, i.e. their 

corrosive nature and they cannot be easily separated from the reaction mixture. 

Heterogeneous catalysts represent an important alternative, as they can be easily 

removed from the liquid mixture after the reaction, they are not corrosive to the 

equipment and the side reactions can be almost completely suppressed [1].  

Esters are generally used as plasticizers, solvents, flavor chemicals and as 

precursors for pharmaceuticals, agrochemicals and other fine chemicals. Among 

carboxylic acids, pelargonic acid has a great importance as it can be obtained from 

vegetable oils. Pelargonic acid esters can be used in chemical industries as a 

chemical intermediate for synthetic flavors, cosmetics, pharmaceuticals and corrosion 

inhibitors [2] and as solvents for bio–based varnishes in combination with a 

commercial resin as reported by Benessere et al. [3]. The obtained solvents showed 

an excellent ability to disperse resins derived from rosin in unprecedented mass 

percentage, in shorter time and at lower temperature with respect to commonly used 

solvents [3]. Sharma et al. [4] investigated the esterification of pelargonic acid with 

methanol with homogeneous catalyst (H2SO4) and heterogeneous ones (Amberlyst 

15, Amberlyst 35, Dowex 50WX2). 

Earlier studies [5] established that the cation exchange resin Amberlite IR120 as 

an affordable, green esterification catalyst capable of being used repeatedly without a 

significant decrease in its capacity. 

In the present work, the kinetics of pelargonic acid esterification with  

2-ethylhexanol was conducted using Amberlite IR120 as heterogeneous catalyst both 

in a batch and in a continuous reactor.  
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Tests were conducted varying different operating conditions (i.e. stirring rate, 

temperature, catalyst load, reactants molar ratio) in order to evaluate the effect on the 

reaction rate. It is shown as example the effect of the temperature in Figure 1. 
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2-ethylhexanol/PA = 5:1 mol/mol


cat
 = 16.9 g/L

600 rpm
 T=363.15 K
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A
 [%

]

t [h]  
Figure 1. Temperature effect on the pelargonic acid conversion. Experiments performed at 600 rpm,  

2-ethylhexanol/pelargonic acid 5:1 mol/mol, 5 bar N2, 16.9 g/L Amberlite IR120 

From tests performed in batch reactor it was possible to observe the absence of 

external mass transfer limitation while intraparticle mass transfer limitation occurred.  

Tests conducted in a continuous reactor confirm the kinetics investigated in batch 

experiments and a kinetic model was developed to interpret in detail the experimental 

data and to evaluate chemical and mass transfer phenomena involved in the reaction 

network. 
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HIGHLY-DISPERSED ZINC SPECIES ON ZEOLITES FOR THE 
CONTINUOUS AND SELECTIVE DEHYDROGENATION OF ETHANE 

WITH CO2 AS A SOFT OXIDANT 

G. Vilé 

Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, 
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy 

The CO2-assisted ethane dehydrogenation is a novel promising approach to 

generate ethene, while exploiting abundant C2H6 from shale-gas and anthropogenic 

greenhouse gas CO2 in a circular manner [1]. We report herein the preparation, 

characterization, and catalytic performance of a series of heterogeneous catalysts 

featuring highly dispersed zinc sites on zeolitic SSZ-13 and ZSM-5 frameworks [2]. 

The materials are evaluated in the CO2-assisted oxidative ethane dehydrogenation, a 

very important reaction for the synthesis of platform chemicals. In particular, we find 

that Zn2.92/SSZ-13 exhibits high reactivity in the conversion of C2H6 and CO2 and high 

ethene selectivity. In line with the experimental results, we show that the selective 

character of the catalyst is due to the characteristic compositional structure of the 

support and its topology that can effectively confine CO2 molecules. An in-depth 

molecular analysis via operando studies and DFT calculations shows that the rate-

limiting step of the reaction with CO2 is the second C-H bond dissociation to give 

C2H4. The addition of CO2 effectively reduces the energy barrier of this step, favoring 

desorption of C2H4 while limiting byproduct formation. Overall, this work 

demonstrates the breakthrough potential of catalysts made of highly dispersed zinc 

species on zeolites in relevant transformations. 
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CONVERSION OF VEGETABLE FEEDSTOCK, PEAT AND COAL TO 
POROUS CARBON-MINERAL COMPOSITES AND CARBONS VIA 

OXIDATIVE CARBONIZATION IN FLUIDIZED CATALYST BED 

Yeletsky P.M., Dubinin Yu.V., Yazykov N.A., Yakovlev V.A. 

Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia, yeletsky@catalysis.ru 

Currently, seeking new energy efficient and environmentally friendly approaches 

to carbon dioxide utilization is one of the hottest topics in chemical engineering 

science [1]. As an effective approach to CO2 capture can be its consumption by 

vegetable biomass followed by carbonization to produce biochar and porous carbon 

materials, thus, converting the major part of CO2 to solid amorphous carbon based 

products. Compared to pyrolysis-based approaches, oxidative carbonization of 

biomass at low temperatures in fluidized catalyst bed (FCB) and air, as the gaseous 

medium, can allow one to hold the process in autothermal mode with avoiding the 

necessity of creation of inert atmosphere. Furthermore, the use of a deep oxidation 

catalyst turns the process to clean one, as it was demonstrated in combustion of 

such hazardous and difficult to utilize feedstocks as high sulfuric heavy oil and 

sewage sludge [2,3]. 

In this work, three types of renewable raw materials (wheat bran, rice husk, and 

highly mineralized peat Sukhovskoy), as well as brown coal were investigated to 

produce porous carbon-mineral composites (chars) and porous carbons. Wheat bran 

(WB) and rice husk (RH) were used as vegetable feedstocks, while peat and coal – 

as sedimentary ones having different composition and properties of mineral and 

carbon-containing phases. The mineral component of peat is represented mainly by 

CaCO3, coal – by a mixture of SiO2, Al2O3 and Fe2O3, WB – by oxides of alkali and 

alkali-earth metals, and RH – by SiO2. 

At the first step, the feedstocks were subjected by oxidative carbonization in a 

reactor with fluidized bed of a deep oxidation catalyst at 465, 550 and 600 °С, and 

the contact time of ca. 1.0 s, to produce the composites. It was found that content of 

mineral phase increase with the carbonization temperature in all cases. The lowest 

ash content was in the case of coal (16-20 wt. %) and the highest – for peat and rice 

husk (both ca. 56-79 wt. %). Investigation of their properties showed that BET 

specific surface area of the materials (ABET) can achieve 170 m2·g–1, and total pore 

volume (VƩ) – 0.2 cm3·g–1. The further removal of their mineral phase, playing a role 
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STABILITY OF PLATINUM-RUTHENIUM CATALYSTS IN THE 
SELECTIVE SYNTHESIS OF H2 AND CO 

Zhang X.1, Komashko L.V.1, Murzin D.Y.2, Tungatarova S.А.1,3, 
Baizhumanova T.S.1,3 

1Institute of Fuel, Catalysis and Electrochemistry, Almaty, 050010, Kazakhstan, 
tungatarova58@mail.ru 

2Åbo Akademi University, Process Chemistry Centre, Turku, Finland 
3Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan 

The results of the stability of study of the developed optimal composition Pt : Ru = 

1 : 1 (Pt : Ru = 0.7 : 0.3, at.% ) of the catalyst in the reaction of SCO (selective 

catalytic oxidation) and the steam oxygen conversion (SOC) of methane to synthesis 

gas at millisecond contact times. Methods of catalyst regeneration were determined. 

Synthesis gas is an important raw material for the production of numerous 

chemical products. Depending on the ratio of hydrogen and carbon monoxide in the 

synthesis gas, it is used to produce liquid hydrocarbons or oxygen-containing 

compounds, including methanol, acetic acid, formaldehyde, and dimethyl ether. The 

methane co-reaction, which gives a molar ratio of H2/CO = 2.0 in the products, could 

be an alternative reaction to the steam reforming of methane for the production of 

synthesis gas. 

One of the most important characteristics of catalysts is their stability. We 

conducted a stability test on the developed fine-dispersed optimal composition of Pt-

Ru = 1 : 1 of the catalyst in the reaction of COX and PAC of methane to synthesis 

gas at millisecond contact times. Figure 1 shows that the catalyst did not lose its 

activity until 225 hours. Then the methane conversion rate gradually decreased from 

100 to 40 %. The catalyst was regenerated by treatment with a reducing mixture with 

a high CH4 content, and then reduced to a mixture of H2+Ar. But the most optimal 

solution was to add water vapor to the reaction mixture. Only then did the activity 

return to its original value. Next, the process of methane PAC was carried out with 

the water vapor concentration found experimentally, which was optimal. It should be 

noted that these processes use only 10 milligrams of catalyst diluted four hundred 

times with quartz. 

Thus, the synthesized 1.0 % Pt-Ru (at. %)/2 % Ce/(+) – Al2O3 the catalyst 

selectively worked without losing its activity for 410 hours in the reaction of COX and 

PAC of methane. 
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Process conditions of SCO of methane: СН4 : О2 : Ar = 2,0 : 1,0 : 97,0, %,  

Т = 1173 К, V = 9·105 h–1,  = 0,004 s 

SOC of methane: СН4 : О2 : Н2О : Ar = 2,0 : 1,0 : 2,0 : 95,0, %, Т = 1073 К,  

V = 1·105 h–1,  = 0,036 s. 

 

Fig. 1. Investigation of stability 1,0 % Pt-Ru (1:1)/2 % Ce/(+)Al2O3 catalyst. 

Acknowledgments 

The work was supported by the Ministry of Education and Science of the Republic of Kazakhstan 
(Grant AP05132348). 



PP-87 

437 
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In recent years, an intensive study of processes involving biogas as an alternative 

source of not only energy, but also raw materials for petrochemical production began 

in the world due to the inevitable exhaustion of non-renewable energy sources and 

raw materials for petrochemical production. Biogas resulting from the anaerobic 

fermentation of biomass and from any organic waste is a practically inexhaustible 

renewable resource for obtaining of valuable products such as synthesis gas, 

hydrogen, and hydrocarbons. Even biogas of "low" quality are suitable for its 

processing into valuable raw materials for power engineering and petrochemistry, 

which makes it possible to avoid expensive methods of its production. 

The results of carbon dioxide reforming of CH4 (model biogas) on the catalysts 

prepared by solution combustion synthesis (SCS) and impregnation of moisture 

capacity methods are presented. Investigation of the activity of catalysts produced 

from initial mixture of Ni-Co-Mg-Ce-glycine of different composition was carried out 

for the production of synthesis-gas and comparison of SCS and traditional 

impregnation methods preparation of catalysts. 

The studies were carried out at various space velocities, temperatures and the 

composition of the reaction mixture. A gas mixture containing methane and carbon 

dioxide (or oxygen) diluted with an inert gas (Ar) in the presence and absence of 

water vapor was used for reforming. Dry reforming of methane was studied on a 

catalyst obtained by solution combustion synthesis at W = 860 h–1 and the ratio of the 

components of the reaction mixture CH4 : CO2 : Ar = 33.3 : 33.3 : 33.3, and also at  

W = 2500 h–1 when the ratio of the components of the mixture of CH4 : CO2 : Ar = 

46.7 : 23.3 : 30.0. Figure 1 shows the effect of space velocity and the addition of 

water vapor on the conversion of raw materials and the yield of reaction products. It 

can be seen from the figure that when the space velocity decreases from 2500 h–1 to 
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860 h–1, the CH4 conversion, the yields of H2 and CO increase, and the addition of 

water vapor further increases the conversion of the feed and the yield of H2. 

 
Fig. 1. The effect of space velocity and the addition of water vapor on the conversion of raw materials 

and the yield of reaction products. 1 – 2500 h–1 in the absence of water vapor, 2 – 860 h–1 in the 
absence of water vapor, 3 – 860 h–1 in the presence of water vapor 

Similar experiments were carried out on the same composition of the catalyst, 

prepared by the method of impregnation by moisture capacity at space velocities of 

860 and 2500 h–1 at 850 and 900 °C in the presence and absence of water vapor. 

Comparative results show that the preparation of catalyst by impregnation is inferior 

to the SCS method, in which higher values of feed conversion and H2 yield are 

obtained. As a result of the temperature change, it was found that carrying out the 

process at 900 °C allows one to achieve high values of both yield and selectivity for 

H2 and CO, but the H2/CO ratio decreases from 6.1 (T = 700 °C) to 3.9 (T = 900 °C) 

at W = 2500 h–1. 
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Abdurakhmanova S.S.1, Salieva M.K.1, Ikramov A.1,3 
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3Tashkent Chemical Technological Institute, Tashkent, Uzbekistan, 
E-mail: bulak2000@yandex.ru 

Currently, the global diversification of oil and gas industry, including the 

introduction of innovative technologies in the petrochemical or heavy organic 

synthesis in modern conditions is 62-67 % [1]. To date, the introduction of the world 

chemical industry in modern technology synthesis of new aromatic acetylene 

alcohols, based on their creation of polymeric and plastic materials with unusual 

properties, solvents, fungicides, stimulants, antibiotics, hormones, adhesives and 

paints is perspective task [2-5]. 

This work was the first time to study reactions based on phenylacetylene and 

some aldehydes and ketones in the presence of KОН-Et3N-Et2O or THF catalysts. 

Reaction scheme is proposed below, that is based on literature sources [9]. 

+   R C

O

RI KOH-Et3N-Et2O or THF

0 oC,  8 h. RI R
HO  

Where: RRI= −Me (I);  R= −Me, RI= −Et (II); R= −Me, R
I= −Pr (III); RRI= −Et (IV);  R= −Me, R

I= −iPr (V);  
R= -Me, RI= trBu (VI); R= -Ph, RI= -Me (VII); R= -MeСHCH, RI= -H (VIII); R= -Me, RI= -H (IX);  

R=- cHe, RI= -H (X); R= -Ph, RI= -H (XI); RRI= -cHe (XII); RRI= -MecHe (XIII); 
RRI= -MeiPrcHe (XIV); RRI= -Me3bicHe (XV) 

For achievement of high yields of aromatic acetylene alcohols it was 

systematically investigated influence of different factors – temperature, duration of 

reaction, nature of solvents and catalysts, mole ratio of initial compounds. The results 

are shown in the table.  

At THF in comparison with Et2O of medium increased and it using active 

complexes were formed; constant of reaction rate has increased and the result of 

transmition of KOH in solutions favorable homogeneous catalytical conditions for 

formation of active centers and compatibly to increasing of yields of products. Owing 

to that electronic pairs of oxygenation of Et2O are placed in one plane, and at THF 

the negative charge in delocalization state in cycle catalytical activity of KOH has 
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increased owing to which hydrolysis of acetylenides and alcoholates forming during 

of reaction was increased.  

At carring out of difficulty of formation of KOH suspension formation of catalytical 

active centers and interaction of molecules of reagent were decreased what carried 

out to decreasing of reaction rate and yields of products. At temperature 0oC velocity 

of moving of molecules of initial compounds and solvent was increased and their 

influence with alkalies have formed active particles with high energy. With increasing 

of number of such particles have nucleophilic interactions; instability of acetylenids 

and alcoholates increased and proper yields of aromatic acetylene alcohols have 

increased. Also conducting of process at 0 °C, ionic bonds in molecules of 

alcoholates and acetylenides are destructed with formation of cations what is 

promoted to increasing of reaction of phenylacetylene with ketones. At increasing of 

temperature 20 °C yields of products were decreased owing to partial polymerization 

of aromatic acetylene alcohols, by-products- acetates, polyacetates and vinyl 

alcohols.  

Influence of nature of solvents on yields of aromatic acetylene alcohols 

Synthesized 
acetylene 
alcohols 

Yields of product, % 
KОН-Et3N-Et2O 

Activation 
energy, 

kcal/mole 

Yields of product, % 
KОН-Et3N-THF 

Activation 
energy, 

kcal/mole 
I 79 8,65 84 9,80 
II 72 7,52 76 8,11 
III 71 7,12 73 7,94 
IV 69 6,52 71 7,52 
V 66 8,48 68 9,32 
VI 61 8,82 67 9,54 
VII 80 7,56 87 7,67 
VIII 67 8,08 68 8,46 
IX 73 6,54 79 7,32 
X 62 6,31 66 7,01 
XI 83 8,80 86 9,97 
XII 57 7,44 60 8,04 
XIII 54 8,36 55 8,54 
XIV 48 8,07 51 8,28 
XV 42 9,52 48 9,73 

According to the obtained results of our experiments the optimal conditions for 

synthesis of aromatic acetylene alcohols have been determined, which reaction was 

conducted in presence of KOH in solution of THF, temperature 0 °C and duration 8 h. 
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Quinones are a class of organic compounds with a number of important 

properties. Therefore, at present new methods for the quinone synthesis are of great 

demand.  One of methods of quinones production is diene synthesis from 

benzoquinone (BQ) or 1,4-naphthoquinone (NQ) and 1,3-dienes in the presence of 

oxidizers [1-2].  

As oxidizers Mo-V-P heteropoly acids H3+xPVV
xMo12–xO40 (HPA-x) can be used. 

Unlike many other oxidizing agents, the vanadium-containing HPA solutions are able 

to be regenerated by O2.Thus they can catalyze the two-stages oxidation of various 

substrates by O2. It is known also that vanadium-containing HPA-х solutions can be 

used as acid catalysts of cycloaddition reaction (diene synthesis) for getting para-

quinones from quinones and 1,3-dienes [3]. Therefore, HPA-x solutions can be 

bifunctional (i.e. oxidative and acidic) catalysts in this one-pot process.  

We have developed new processes of quinones production from hydroquinone 

(HQ) or NQ in the presence of HPA-x solutions [3-5]. At that, we have combined in a 

single technological stage three types of reactions:  

1) oxidation of HQ by HPA-x to BQ;  

2) the acidic-catalyzed Diels-Alder reaction of different 1,3-dienes (1 or 2 mol) 

with BQ or NQ giving substituted 1a,4a-tetrahydro-NQ (THNQ) or 1,4,4а,9а-

tetrahydroanthraquinone (THAQ) respectively;  

3) the sequential oxidation of THNQ or THAQ by HPA-x with the formation 

substituted NQ or AQ. Thus, our one-pot processes are described by the following 

scheme:  

R3

R2

R1

OH

OH

R4

O

O

R4
+

O

O

R2

R3

R1

R4

O

O
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R3

R4

-2e-

-2H+

O

O
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-2H+
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-2H+
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R1

R2

R3

O

O

R1

R2

R3

R1

R2

R3

HPA-10
-4e-

-4H+

NQ AQ  

Results are presented in the Table. 

№ Substituents Yield of product, % 
Content main product 

in precipitate, % 

 a) Naphthoqinones 

1 R1 = H, R2 = CH3, R3 = R4= H 63 98 

2 R2 = R3 = R4 = H, R1 = СH3 62 97 

3 R2 = R3 = СH3, R1 = R4 = H 72 90 

4 R1 = R2 = R3 = R4 = H 51 99 

5 R1 = R2 = R3 = H, R4 = СH3 32 96 

 b) Anthraquinones 

6 R1 = H, R2 = R3 = СH3 78 98 

7 R1 = R2 = R3 = H 70 97 

8 R1 = R3 = R4 = H, R2 = СH3 72 96 

9 R1 = R3 = R4 = H, R1 = СH3 91 99 

Conditions: a) 2×10–3 mol HQ, 10 mL 0.25 М H7PMo8V4O40 (HPA-4) water solution, volume ratio HPA-
4 : 1,4-dioxane = 1 : 1, reaction time 30 h, temperature 20 °С. HQ conversion ≥ 99 %; 
b) 1.3×10–3 mol NQ, 3,9 mL 0.20 M H17P3Mo16V10O89 (HPA-10) water solution, volume ratio HPA-10 :
1,4-dioxane = 1 : 2; reaction time 7 h, temperature 80 °С. NQ conversion ≥ 99 %. 

In the industrial version, these processes can be realized in separate reactors 1 

and 2. In the 1st stage a substrate is oxidizing by HPA-x. In the 2nd stage HPA-x is 

regenerated by O2. 

At the 1st stage, solutions of catalyst and substrate react in a jacketed glass 

reactor equipped with agitator and reflux condenser in the absence of oxygen. After 

reaction completion, the obtained mixture is transferred to a filter where solid product 

are filtered away. After that catalyst solution is submitted to an unique plug-flow air 

reactor and regenerated for 20-25 min at 160-170 °С and PO2 = 0.4 mPa. The 

regenerated HPA-x catalyst is fed again for the next catalytic cycle.  
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Impinging jets microreactors are one of the new and perspective ways for 

processes intensification of chemical precipitation due to better micromixing. The 

very high mass transfer rates resulting from very low reaction-volume/surface-area 

ratios make microreactors potentially attractive for the synthesis of inorganic 

materials [1]. This method promises long-term solutions to the modern challenges in 

synthesis of nanosized particles, the rapidly growing research interest is confirmed 

by recently published papers, books [2] and book chapter [3]. 

Free impinging jets reactors are relevant to nanoscale particle synthesis by using 

liquid precipitation. It refers to the rapid formation of moderately soluble crystalline or 

amorphous solid particles in a liquid solution, whereas particle formation occurs 

under high supersaturation conditions. Precipitation involves the simultaneous and 

fast occurrence of primary nucleation and growth together with the secondary 

processes such as Ostwald ripening, aggregation and breakage. Usually the solid 

product has a wide crystal size distribution which determined by the intensity of 

mixing and other process conditions, such as the viscosity and temperature of 

solutions. This method can strongly minimize crystal size distribution by the ability to 

generate fast micromixing, the timescale of which is on the order of milliseconds [3]. 

Chemical reactions applied in so-called reactive crystallization processes are 

usually very fast, which means that their course depends on mixing as well. Due to 

the high sensitivity of primary nucleation to supersaturation, the number of primary 

particles is controlled by nucleation and affected by mixing, whereas crystal growth is 

less important, because after complete unloading of supersaturation, it is more the 

number of crystals than the rate of their growth that determines their final size. The 

growth rate can, however, affect their shape [4]. 
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CALCIUM PHOSPHATES CATALYTIC PROPERTIES AND THERMAL 
STABILITY IN METHYL LACTATE DEHYDRATION  

Chernyshev D.O., Varlamova E.V.*, Suchkov Y.P., Sapunov V.N.,  
Kozlovsky R.A. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia 
* e-mail: varlamova@yandex.ru 

Introduction. The stable growth, around 3-4 % per year, of the world's acrylic 
acid (AA) production capacity over the past decade suggests that final products using 
AA remain in demand even during times of economic crisis. At the same time, with 
the growth of the technology segment for the production basic monomers from 
renewable raw materials, it shows the promise of this direction. The main problem in 
the implementation this technology now is lack of lactic acid and ethers 
understanding of the dehydration mechanism and parameters affecting on stability of 
the proposed catalyst systems. 

In this work, we evaluated the catalytic activity and thermal stability of various 
calcium phosphate [1] salts and proposed the most promising phosphate forms for 
the LA and ethers dehydration to AA. 

Results. On figure #1 shows all types of calcium phosphate salts, as well as the 
conditions for their synthesis and decomposition/transition between different types. 

The most low stable from phosphate is dihydrogen calcium phosphate (CaDHP - 
Ca(H2PO4)2), according to [3] and our TGA, with increase temperature on first stage 
the salt witch lose water with the following decomposition and formation of 
metaphosphate with structure: Ca3(P3O9)2 or -[Ca(PO3)2]-, dependence from final 
calcination temperature. The calcium hydrogen phosphate (CaHP - CaHPO4), 
according to [3] and our TGA, decomposition with removal water and turns into 
pyrophosphate form, at temperatures around 430-440 °C. The ortho- and 
pyrophosphate (CaOP - Ca3(PO4)2 / CaPP - Ca2P2O7) are stable up to temperatures 
700 °C, which is significantly higher that the temperature range of the dehydration ML. 

Also we can synthesis an intermediate between CaHP and CaHAp are formed 
octophospahte calcium [4] with the following composition: Ca8(HPO4)2(PO4)4 
(CaOctP), that phosphate form stable till 350 °C and decomposition at first stage to 
CaDHAp in temperature range 350-600 °C and than with temperature over 600 °C in 
CaPP and CaOP. The calcium deficient hydroxyapatite (CaDHAp - 
Ca9(HPO4)(PO4)5(OH)) can synthesis over "wet" way, according [5] and our TGA, 
and keep stable till 600 °C. At the temperature above 600 °C the CaDHAp are 
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CATALYTIC CONVERSION OF ETHANOL TO ETHYL ACETATE 

Dubrovskiy V.S., Zolotarev E.S., Grivin A.V., Kozlovskiy I.A. 

D. Mendeleev University of Chemical Technology of Russia,  
125047, Moscow, Russia, dubrovskiy456@mail.ru 

 
The reason for specifically studying the dehydrogenation of ethanol is that 

ethanol could be one of the future feedstock of the chemical industry. Ethyl acetate 

produced from ethanol has a low toxicity and it is broadly employed as a solvent in 

many industrial products such as paints, adhesives and coatings, as a green 

alternative, eliminating the use of aromatic compounds. Different catalytic systems 

have been applied for dehydrogenation of ethanol using Cu and Pd-based catalysts 

supported on different carriers [1]. 

In present work, direct transformation of ethanol to ethyl acetate was studied over 

supported cooper catalysts: Cu/ZnO/Cr2O3 and Cu/ZrO2. Catalysts were prepared by 

incipient wetness impregnation of support with a solution of Cu(NO3)2*3H2O in 

methanolThe solids were dried at 423 K and calcined at 773 K for 12 and 5 h, 

respectively. Activity and selectivity of the catalysts were carried out in a continuous-

flow, tubular reactor. Samples were reduced in situ by heating in pure H2 flow. 

 

Catalyst 
Contact 
time, s 

Temperature, 
°С 

Conversion, 
% 

Selectivity, % Сarrier 
gas AA EtOAc AcH Buthanol-1 

Cu/ZnO/Cr2O3 

3 270 55,7 8,8 1,4 29,3 0 N2 

6,2 250 47,8 8,2 2,1 32,3 0 N2 

5,9 270 55,8 9,9 2,2 26,4 0 N2 

5,6 300 63,8 13,5 2,2 22,3 0 N2 

Cu/ZrO2 

3,3 225 80,7 0,3 4,2 7,6 7,2 N2 

3,3 225 67,6 0,1 2 3,2 7,9 H2 

3 270 79,9 0,3 3,3 5,2 12,2 H2 

3 270 59,4 0,1 1,5 11,3 6,6 N2 

AA – acetic acid, EtOAc – ethyl acetate, AcH – acetaldehyde 
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model of the process, it difficults the calculation of the  and  constraints 

derivatives, as there is no algebraic formulation and its numerical estimation can 

make the solution time prohibitively large. 

In order to circumvent this obstacle, a stochastic derivative-free method is 

implemented. The mesh adaptive direct search algorithm MADS in its software 

implementation NOMAD [6] was coupled with Aspen Plus via an ActiveX visual basic 

interface written in Microsoft Excel. The optimized variables and solution scheme are 

presented in figure 2. The cost functions are written following the correlations 

presented in [7], column hydraulic relationships are taken from [8]. 

Constructive and operative optimization variables  
Catalyst load by reactive plate, kg 1
Number of plates 2
Feed plate 3
Start – end of reactive part 4 – 5
Reboiler heat load, kW 6
Reflux ratio 7
Isothermal reactor temperature, °С 8
Secondary ethanol flowrate, kg/h – feed plate 9 – 10
Recycle flowrate, kg/h – extraction plate 11 – 12
Column diameter, m 13
Distance between plates, m 14

Performance requirements and target function 
ETBE product purity (mass fr.) 0.95 
Isobutylene conversion degree (mole fr.) 0.98
Total capital and operative costs (1000$/year) Ψ

 

 

Figure 2. Optimization variables and solution diagram 

This approach proved to be an effective solution strategy to the optimal design 

problem that, that makes use of the time-saving modeling advantage offered by 

commercial process simulation tools. Total capital and operative costs are reduced in 

more than 20 % compared to an unoptimized flowsheet with the same performance 

requirements. 

References 

[1] M.G. Sneesby; et al. Ind. Eng. Chem. Res. 1997, 36 (5), 1855-1869. 

[2] K.F. Yee; A.R. Mohamed; S.H. Tan. Renew. Sustain. Energy Rev. 2013, 22, 604-620. 

[3] G.J. Harmsen. Chem. Eng. Process. Process Intensif. 2007, 46 (9), 774-780. 

[4] T. Frey; J. Stichlmair. Comput. Aided Chem. Eng. 2000, 8, 115-120. 

[5] Stochastic optimization using Aspen Plus; Taylor and Francis Group: Boca Raton, 2017. 

[6] S. Le Digabel. ACM Trans. Math. Softw. 2011, 37 (4). 

[7] Analysis, Synthesis, and Design of Chemical Processes, 4th ed.; Prentice Hall: Michigan, 2012. 

[8] J.M. Gómez; et al. Ind. Eng. Chem. Res. 2006, 45 (4), 1373-1388. 

Acknowledgements 

The author is grateful to the Engineering Chemical Technological Center (ООО «ИХТЦ») of 
Tomsk city for its kind support in allowing the use of its Aspen Plus commercial license for the 
realization of this work. 

NOMAD

Aspen Plus

X0
Answer
X at min. Ψ 

ActiveX interface (Excel) 

X1 – X16 F(x), G(x)

Hydraulics routine 
(Excel)



VP-5 

454 

WACKER-TYPE OXIDATION OF FATTY ACIDS AND DERIVATIVES 

Svetlana I. Gustyakova*, Valentin N. Sapunov, Mikhail S. Voronov,  
Ilona S. Kozeeva 

D.I. Mendeleev Russian Chemical-Technological University,  
9, Miusskaya square, 125047, Moscow, Russia,  

*E-mail: svet.ru1994@mail.ru 

Nowadays the use of renewable sources of raw materials is widespread and 

popularized in relation to the environmental dimension. It is replacement for raw 

materials of petrochemical origin. Due to the presence of double bonds in vegetable 

oils and their derivatives, they can be functionalized into value-added products. An 

interesting and little-studied direction of the modification of the double bonds of the 

vegetable oils derivatives is the “Wacker type” reaction to produce ketocarboxylates, 

as well as the further conversion of these groups to carboxylic. The oxidants are may 

be, for example, hydrogen peroxide and organically peracids [1]. 

The Wacker process or the Hoechst–Wacker process originally referred to the 

oxidation of ethylene to acetaldehyde by oxygen in water in the presence of a 

palladium tetrachloride catalyst. This chemical reaction was the first organometallic 

and organopalladium reaction applied in industrial scale (e.g. [2]). However, the 

catalyst system and reaction conditions are also applied to oxidations and oxidative 

cleavage of renewables [3, 4, 5]. The purpose of the work is to select the conditions 

for the oxidation of unsaturated fatty acid derivatives and vegetable oils and the 

identification of oxidation products. 

Oleic acid was chosen for beginning the research. The conditions of the process 

are the pH = 0-2, the temperature 60-70 °С, PdCl2 = 0.3-0.5 weight %, CuCl2 = 10-25 

weight % (water solution of the salt are used), the oxidant is the air's oxygen. The 

synthesis is carried out in a cylindrical three-necked reactor with magnetic stirring. Air 

was bubbled through the reaction mass (feed rate – 0,5 liter/min). The reaction time 

is 16 hours, the temperature is 70-80 °C. 

The presence of ketones groups in the resulting product was confirmed by 

qualitatively assesing the anisidine value test (GOST 31756-2012, SO 6885:2006). If 

the sample weight is 0,164 g, the anisidine value is 122.6. Besides, the peroxide 

number was determined. The presence of peroxide groups is 0,28 mmol/g. 

Because of the result shows we can conclude that the conditions of the industrial 

“Waker type” process apply to the production of fatty ketones without creating 
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excessive pressure in the system when the oxidant is the air's oxygen. Selective 

obtain of fatty ketones by this method is allow to obtain valuable organic synthesis 

products (dicarboxylic acids, fatty alcohols, plasticizers, polyesters, biodegradable 

fibers). 
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KINETICS OF HEAVY REFORMATE TRANSALKYLATION OVER 
ZSM-5- AND MORDENITE-BASED CATALYSTS 

Nibras Hijazi, Thamer Mohammad, Veera Venkata Tammana, Ali Abdali, 
Mohammed Sanini, Abdulaziz Aqeel, and Sohel Shaikh  

Research & Development Center, Saudi Aramco, Dhahran, Saudi Arabia 31311, 
nibras.hijazi@aramco.com 

 
Reformate is the major source of bulk aromatic compounds such as benzene, 

toluene, and xylenes. In transalkylation units, heavy reformate is valorized by 

converting the C9+ alkyl aromatics to benzene and mixed xylenes. A ZSM-5- and 

mordenite-based catalyst was screened in a high-throughput reactor system to study 

the kinetics of heavy reformate transalkylation in the presence of toluene and excess 

H2 at 598-648 K and 2 MPa. A mechanism was developed based on dealkylation, 

transalkylation, and disproportionation reactions. Mass balances describing these 

reactions were solved numerically together with least squares fitting of experimental 

data to estimate the kinetic parameters. The dealkylation of alkyl aromatics, namely 

propylbenzene, methylethylbenzene, and methylpropylbenzene, exhibits the highest 

rates among the reactions considered and results in the formation of benzene and 

toluene. Toluene further reacts and undergoes transalkylation and disproportionation 

at the same activation energy (~57 kJ mol–1) to give benzene and xylenes. Measured 

rates signify trimethylbenzene and toluene transalkylation as a prevalent pathway to 

mixed xylenes.  
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STUDIES OF WASTEWATER TREATMENT PROCESS  
OUT ASPHALT-RESIN OIL PRODUCTS  

BY LIQUID PHASE EXTRACTION 

Karimli V., Kelbaliyev G.I., Aliyev G.S. 

M. Nagiyev Institute of Catalysis and Inorganic Chemistry, of NAS of Azerbaijan, 
Baku, Azerbaijan, E-mail: chemproblem@mail.ru 

The features of the liquid-phase extraction process for the development of 

technology for wastewater treatment from asphalt-resinous petroleum products using 

organic solvents are studied. The physicochemical problems associated with the 

processes of liquid-phase extraction are analyzed. 

In the processes of liquid-phase extraction, the main factor is the mass transfer 

between two immiscible liquids. The liquid extraction of organic compounds from 

wastewater is a mass transfer process occurring in an interfacial film and is carried 

out by dispersing the solvent extract in an aqueous medium and extraction in an 

interfacial film, characterized by diffusion transfers of the corresponding components 

to the interfacial surface.  

The efficiency of mass transfer in extractors is determined by the size of the 

droplets of solvent obtained by crushing it under stirring conditions. The process of 

liquid-phase extraction of organic impurities in wastewater with a solvent proceeds 

under conditions of intensive mixing and dispersion, due to which the isotropy of the 

turbulent flow in the extractor is achieved. An equation is written that describes the 

distribution of the concentration of a substance in the approximation of a boundary 

layer on the surface of a single extractant droplet, with the participation of boundary 

conditions. The mass transfer coefficient was determined between the turbulent flow 

and a drop in the form. 
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(1) 

Здесь L   mass transfer coefficient;    scale of turbulence; 0   scale of 

Kolmogorov’s turbulence; R   dissipation energy per unit mass; R  radius of the 

drop; U   flow rate away from the droplet;    coefficient;    the ratio of the 
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viscosity of a drop of isopropyl ether to the viscosity of water; ,d c    kinematic 

viscosity of a drop and medium; 11 12 13, ,C C C   coefficients. 

The Sherwood number was determined by the formula  

for  0  , 

1/4 1/23
1/2

12 4

ReSh Sc
1

c dL

T R

R
C

D R


 
   

       
 (2) 

for 0   

1/6 1/23
1/2

11 4

ReSh= Sc
1

c d

R

C
R


 
   
     

 (3) 

where TD  is the coefficient of turbulent diffusion; ScSchmidt number. 

In mixing devices under conditions of isotropic turbulence for a liquid – liquid 

system, the turbulent diffusion coefficient, according to [1], is determined as 

 1/2 2
T R cD    . Under conditions of intensive mixing, it can be assumed that the 

length of the path of movement of the liquid particles is equal to the radius of the 

mixer, i.e. / 2d  . Then, considering that  
3 5

0

ReR d

n d
f


 , the turbulent diffusion 

coefficient can be determined as follows  

 
 

1/23 7

0

1 Re
4T d

C

n d
D f

 
 

  
 

 (4) 

where  Redf – is the coefficient of resistance of the medium, depending on the 

number Red , 0   the volume of liquid in the mixer. As follows from equation (4), the 

turbulent diffusion coefficient is directly proportional to the rotational speed and 

diameter of the mixer 3/ 2n  and inversely proportional to the viscosity of the medium 

1/ 2
C , i.e. with increasing viscosity of the medium (at low temperatures), the coefficient 

of turbulent diffusion decreases. In principle, the effective diffusion coefficient is 

defined as E TD D D  , moreover, under conditions of intensive mixing, we have 

TD D , that is, the turbulent diffusion coefficient is much larger than the molecular 

diffusion coefficient. 
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methanol (H2 and CO), which begins at a temperature of 150 °C. Also, the process 

does not require additional hydrogen in the reaction. The reaction was carried out for 

5 hours. 

During the study, it was found that the process-using methanol as a solvent 

greatly softens the process conditions in contrast to the main hydrogenation, but the 

process indicator is lower. The values of the two methods are shown in table 1. 

Table 1. 

 With additional H2 In absence of H2 

Temperature, °C 250 240 

Pressure, MPa 20 8 

Conversion, % 100 65 

Selectivity, % 90 90 

In conclusion, we investigated a simple and efficient one-pot process for the 

selective conversion of acid methyl esters to fatty alcohols with nearly 90 % 

selectivity using a highly active and inexpensive Cu/SiO2 catalyst in methanol without 

extraneous H2.  

References 

[1] A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411.  
[2] Liubi Wu, Lulu Li, Bolong Li and Chen Zhao Selective conversion of coconut oil to fatty alcohols in 

methanol over a hydrothermally prepared Cu/SiO2 catalyst without extraneous hydrogen / Chem. 
Commun., 2017, 53, 6152. 



9,

Cur

environ

sources

this po

many 

signific

derivat

1195.1

The

the de

lubrican

Tod

tenden

Basica

fatty ac

addition

alcohol

propos

reactio

0

300

600

900

1200

1500

NON-CA
TRIM

Ilona S. 

D.I. M
 Miusskay

rrently, th

nmentally f

s of raw m

int of view

different a

ant propo

ives marke

7 Mn by 20

Fig

e rapidly g

emand for 

nts market

day biolub

cy to swit

lly, sodium

cid methyl

n, researc

ls in the p

ed method

ns in the 

2017

ATALYTI
METILOL

Kozeeva,
Mikha

Mendeleev
ya square, 

ere is a 

friendly an

materials a

w, biomater

application

rtion also 

et was valu

026 [1]. 

gure 1. Globa

growing au

lubricants

t by 14.5 %

ricants are

tch to este

m and calci

 esters [3

chers also 

presence 

ds is the 

process w

7

C PROC
LPROPA

 Svetlana 
ail S. Voro

v Russian 
125047, M

steady te

alogues. F

nd the lon

rials are fre

ns – the 

falls on l

ued at US$

al castor oil a

tomotive a

s. For exa

% by 2035 

e produced

ers as a ra

ium metho

], but KOH

developed

of lipase 

presence 

with KOH, 

2026

VP-9

462 

CESS FO
NE-BAS

I. Gustya
nov, Valen

Chemical-
Moscow, Ru

endency t

First of all,

g biochem

ee from fla

productio

ubricants 

$ 709 Mn i

and derivativ

and aviatio

ample, Mc

[2].  

d by acid-c

aw materi

oxides are 

H can also

d a metho

enzymes 

of side re

 as well a

R THE P
ED SYNT

kova, Vlad
ntin N. Sa

-Technolog
ussia, e-m

to replace

 this is du

mical decom

aws. Deriv

n of plas

and biodie

in 2017 an

ves market b

on industrie

cKinsey p

catalytic es

al for the 

used for b

o be used

od for tran

[5]. The m

eactions, f

as the nee

Plastics &
Surface C
Lubricants
Biodiesel
Cosmetics

RODUCT
THETIС O

da E. Nogo
punov 

gical Unive
ail: iolanta

e petroleu

e to the no

mposition o

atives of v

stics, resin

esel. Glob

nd is expec

y application

es have a 

redicts an

sterification

transester

basic cataly

d for these

sesterifica

main disad

for examp

ed to neu

& Resins
Coatings
s

s & Pharmac

TION OF
OILS 

ovitsina,  

ersity,  
2006@list

m produc

on-renewa

of products

vegetable o

ns, cosme

bal сastor 

cted to rea

n [1] 

positive e

n increase

n. There is

rification p

ytic alcoho

e purposes

ation of ac

dvantages

ple, sapon

utralize and

ceuticals

F 

t.ru 

cts with 

ability of 

s. From 

oils find 

etics. A 

oil and 

ach US$ 

 

ffect on 

 in the 

s also a 

process. 

olysis of 

s [4]. In 

ids and 

s of the 

ification 

d purify 



VP-9 

463 

catalyst residues. Therefore, the aim of this work was to assess the fundamental 

possibility of carrying out the transesterification process non-catalytically.  

In this work, experiments were carried out on the transesterification of esters and 

polyol without the use of a catalyst. The raw materials used are methyl esters of fatty 

acid (FAME) obtained from sunflower oil and trimethylolpropane (TMP). The 

experiments were carried out in the mixing reactor at 170-210 °C and observed 

[FAME] : [TMP] = 3:1. It was conducted with distillation of methanol. By this method, 

a conversion of 24-26 % was achieved. It was found that the output product depends 

on temperature and reach maximum at 170 °C. The presence of TMP and FAME 

was confirmed by TLC. 

Thereby, the principal possibility of non-catalytic synthesis of trimethylolpropane 

and fatty acid esters is obtained. The described method can be modified in order to 

increase the conversion of FAME and bring the process parameters to similar cases 

of catalytic synthesis. 
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KINETICS OF NON-CATALYTIC N-BUTYL LACTATE PRODUCTION 
FROM AMMONIUM LACTATE 

Kozlovskiy M.R., Kozlovskiy R.A., Kozlovskiy I.A., Voronov M.S.,  
Ibatov Y.A., Brinko N.S. 

D. Mendeleev University of Chemical Technology of Russia,  
125047, Moscow, Russia, rakozlovskiy@mail.ru 

Currently, the world is facing an acute problem of polymer waste. For this reason, 

there is an increasing need for biodegradable polymer materials. One of the most 

demanding biopolymers today is polylactic acid. The raw material for polylactide 

production can be the lactic acid obtained from vegetable renewable sources by 

carbohydrates fermentation.  

There are different methods to extract the lactic acid from fermentation broth. Аn 

effective way of these is a conversion of lactic acid to butyl lactate ester with 

following purification by vacuum rectification. However, the conversion of lactic acid 

to butyl ester is complicated by the presence of lactic acid in the ammonium lactate 

form. Thus, it is not possible to use an acid catalyst due to its deactivation with an 

ammonium ion. At first, it is necessary to carry out a non-catalytic stage until the 

almost complete conversion of ammonium lactate. In addition, this stage is 

complicated by the formation of a by-product, which reduces the selectivity of the 

process. The next catalytic stage proceeds quickly and without difficulties. Therefore, 

non-catalytic esterification step of ammonium lactate with butanol is more interesting 

for research.  

Currently, in the literature, we can notice a lack of research on the kinetics of 

ammonium salts non-catalytic esterification. Therefore, this process requires 

additional study. In order to study this process, a series of experiments at different 

temperatures was carried out in closed system. The experiments were carried out in 

a jacketed autoclave, equipped with a stirrer. There were accomplished a series of 

experiments at 130 °C, 150 °C and 170 °C.  

Experimental results have been analyzed and the following reaction scheme was 

offered.  
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Thus, based on this scheme there were suggested a kinetic model that 

adequately describe the experimental data. The graphs below shows a comparison 

of the proposed model and experimental points. 
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REGULARITIES OF CATALYTIC CONVERSION OF 
HYDROCARBONS IN CATALYTIC REFORMING OF NAPHTHA  

WITH PRESSURE REDUCTION 

Pchelintseva I.V.1, Seitenova G.J.2, Chernyakova E.S.3, Ivanchina E.D.3 

1«GasInformPlast» Well Testing Center, Tomsk, Russia 
2S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan 

3Tomsk Polytechnic University, Tomsk, Russia 

The improvement of catalytic naphtha reforming process mainly focused on three 

important issues: developing catalysts with higher activity and selectivity, 

modernization of industrial equipment and optimization of the technological mode of 

operations. 

In this studies, the influence of total pressure on catalytic naphtha reforming 

process was investigated and the technological mode of the process, in which the 

optimal ratio between the yield, quality and coke formation rate considering 

composition of the feedstock was determined. 

Mathematical model of a fixed bed reforming reactors performed as system of 

material and heat balances: 

∙

1

∙
∙ ∙ ∙ ∆

 

The initial conditions: 

atz = 0, Ci = 0, T = 0; 

atV = 0, T = Т0, Ci =Ci0; 

 

where Gc is a raw material flow rate, m3/s; Ci is a concentration of ith component, 

mol/m3; Z is a volume of raw material processed from the moment when the fresh 

catalyst (new catalyst, no regenerations were done) was loaded, m3; V is a catalyst 

volume in the reactors, m3; aj is a catalyst’s activity; rj is a reaction’s rate, mol/m3·s; i 

is a component’s number in a mixture; j is a reaction’s number due to formalized 

scheme accepted; Т is a temperature, К; ρ is a density, mol/m3; Ср
mix is a heat 

capacity of mixture, kJ/mol·K; ∆Н is jth reaction heat, kJ/mol; R is the gas constant, 

8,314 MPa·l/mol·K; P is a pressure, MPa. 

The adequacy of the model was verified by comparing the experimental data from 

reforming units and the data calculated with the mathematical model. 
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Figure 1. The dependence of yield from pressure 

It was found, that decrease in the pressure range from 1,5 to 1,2 MPa at the 

temperature 478-481 °C and feedstock space velocity is 1,4 hour–1 induces an 

increase in yield or 1-2 % mass. due to increase in the aromatization reactions rate 

and deacrease in the hydrocracking reactions rate depending on feedstock 

composition and catalyst’s type, but at the same time do not induces in the 

isomerization reactions rate. 

It is shown that the decrease in pressure is limited by the requirements for the 

catalyst stability due to the increase in the coke formation rate. It was found, that with 

the temperature at the reactor entrance is 478 °С, the raw material flow rate is 

64,3 m3/h and the naphthenic feedstock the total amount of coke is evenly increased 

by 0,5-1,0 % mass. depending on pressure and catalyst’s type. 

It is proposed that the criterion of optimality is the yield, expressed in octano-tons. 

It was calculated with the mathematical model, that with the naphthenic feedstock 

using the pressure should vary in the range from 1,3 to 1,5 MPa. 

References 

[1] Yakupova (Pchelintseva) I.V., Chernyakova E.S.. Ivanchina E.D., Beliy A.S., Smolikov M.D. 
Performance prediction of the catalyst PR-81 at the production unit using mathematical modeling 
method  // Procedia Engineering. 2015. V.113. P.51-56. 

Acknowledgements 

The research was also supported by RSCF grant № 19-71-10015. 

 80

 81

 81

 82

 82

 83

 83

 84

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8

Y
ie
ld
 in

 o
ct
an

o
‐t
o
n
s

Pressure, MPa

PR‐9 PR‐81



VP-12 

468 

BASIC REGULARITIES OF GLYCOLYSIS PET WITH KOH 
CATALYSIS 

Valentin N. Sapunov, Georgy V. Dzhabarov, Pavel A. Orel, Mikhail S. Voronov, 
Natalya S. Korovina, Magorina L.N. 

D.I. Mendeleev Russian Chemical-Technological University, 9, Miusskaya square, 
125047, Moscow, Russia, E-mail: ricaura@yandex.ru 

Nowadays utilization of plastic wastes is one of the most important ecological 

directions in global chemical industry. Due to its properties polyethylene 

terephthalate (PET) is widely used as beverage bottles and at textile industry. For 

this reason it represents 6 % wt. from total global polymer waste amount [1]. 

Chemical recycling is more difficult than mechanical recycling, but it provides an 

opportunity to produce clean monomers (terephthalic acid, dimethyl terephthalate or 

bis(2-hydroxyethyl) terephthalate (BHET)) as well as their functional derivatives. 

Glycolysis is the most promising among them and great number of scientific works 

concerned with it. There are a lot of different catalysts of the process from very 

simple (as zinc chloride [2] or sodium carbonate [3]) to very effective but complicated 

ones (such as manganese or cobalt nanocatalysts [4,5] or ionic liquds [6]). 

In this work PET glycolysis by ethylene glycol (EG) in the presence of KOH was 

studied. As a feedstock were used only ethylene glycol, potassium hydroxide and 

waste PET, obtained from bottles of soft drinks, with particles size of 2.5x0.5 cm, 

without any pretreatment. It was noticed that in first term KOH quickly reacts with 

plastic with formation of dipotassium terephthalate (DPT) and further DPT acts as a 

catalyst (figure 1). It has been discovered that kinetics of the process strongly 

correlates with microstucture of PET. Activation energy and frequency factor was 

determined and they were 129,3 kJ/mole and 3,37*1014 respectively.  
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THE DETERMINATION OF THE KINETIC CONSTANTS OF THE 
PROCESS OF THE AROMATIZATION OF THE NATURAL-GAS 

CONDENSATE ON THE CATALYST MFI40 

Sovetin F.S., Gartman T.N., Sapunov V.N., Kozlovskiy R.A. 

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 
e-mail: fsovetin@inbox.lv 

Aromatic hydrocarbons are the most important starting products in the industry 

of basic organic and petrochemical synthesis. They produce plastics, synthetic 

fibers, resins, rubbers for various purposes, dyes, surfactants and pharmaceuticals, 

as well as plant protection products. The most widely used light arenas are 

benzene, toluene and xylenes. Currently, aromatic hydrocarbons are mainly 

obtained by aromatization [1]. 

Improving energy and resource-saving indicators of petrochemical industries is 

not possible without a thorough study and analysis of reactor processes, as a rule, 

occurring in heterogeneous catalytic reactors. The solution of these problems 

requires simulation of chemical reactors where it is possible to take into account the 

influence of the main physicochemical and technological parameters of production 

and, above all, the influence of a specific type of catalyst [2]. 

Determination of the kinetic constants of chemical reaction equations is currently 

an urgent task, due to the variety of possibilities of experimental studies to determine 

them, and the new more advanced and modern instrumentation design of laboratory 

equipment [3].  

The experience of the using model components for modeling reactor processes 

with a large number of chemical reactions is described in the article [4]. On the base 

of the experimental data and their analysis the system of reactions describing these 

transformations was proposed [5-6]: 

1. 2С10Н22 → 2С9Н18 + С2Н6 + Н2; 

2. С9Н18 → С6Н5СН3 + С2Н6 + 2Н2; 

3. С9Н18 + Н2 → С4Н8 + С3Н6 +С2Н6; 

4. 2С4Н8 → С6Н4(СН3)2 + 3Н2; 

5. 3С3Н6 → С6Н3(СН3)3 + 3Н2; 

6. С7Н14→ С7Н12 + Н2; 

7. 2С7Н12→ С10Н12 +2 С2Н6; 

8. 2С6Н4(СН3)2 + 8Н2 → 2С10Н22 + С3Н6 + С3Н8; 
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Values of the rate reactions are based on the analysis of experimental data and 

calculated as follows: ;c;cc;c;c 2
443322

2
11 8421891892210 HCHHCHCHC krkrkrkr   

;cc;c;c;c 82
)(77

2
7766

2
55 2234612714763 HCHHCHCHCHC krkrkrkr   

ci – concentration of i-component [mol/g. Kat]; 

kj – is the conversion factor for the rate of the reaction to [mol/(g(cat) h)]; 

The dependence of the conversion factor of the temperature for the rate of the 

reaction the equation describes: )8,.....2,1(j )
T
B

-exp(A  j
jjk   

Aj, Bj – kinetic constants (j=1,2…..8); 

The task of parametric identification of the model was solved simultaneously for 

all the sets of experimental data in the starting material with the general criteria for 

minimization of the target function: 
 


f

u

n

k

calc YYS
1 1

2.exp
fr.

.
fr. ;][

fr.

 

nfr – number of the fractions; Y- yield of the fraction [%] 

Initial values if the kinetic constants:  

A10=10;A20=10;A30=10;A40=0;A50=10;A60=10;A70=10;A80=10;B10=5000;B20=5000; 

B30=5000;B40=5000;B50=5000;B60=5000;B70=5000;B80=5000; S=7976 

The determined constants 

A1=11.72;A2=8.07;A3=1.27;A4=4.47;A5=11.37;A6=10.43;A7=10.91;A8=2 

B1=4965; B2=5039;B3=5010;B4=5001;B5=5004;B6=4983;B7=5014;B8=5001; S=639 
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MASS TRANSFER IN THE PROCESS OF CATALYTIC OXIDATION 
OF LIGNOCELLULOSES INTO VANILLIN AND PULP 

Valery E. Tarabanko, Dmitry O. Vigul, Konstantin L. Kaygorodov,  
Yulia V. Chelbina, Nikolay Tarabanko, Marina A. Smirnova 

Institute of Chemistry and Chemical Technology SB RAS, 
FRC "Krasnoyarsk Science Center SB RAS", 

50/24, Akademgorodok, Krasnoyarsk, 660036, Russia, E-mail: veta@icct.ru 

Agricultural wastes, in particular, flax shives (FS) are useful renewable 
lignocellulosic resources. Oxidation of lignocelluloses produces vanillin (V), 
syringaldehyde and cellulose. The influence of mass transfer on the yields of the 
listed aldehydes is almost not studied [1]. The purpose of this work is to study the 
influence of the mass transfer rate on the process of catalytic oxidation of flax shives 
into vanillin and cellulose.   

Air-dred FS containing 29.5 wt. % lignin and 41.4 % cellulose was used. 
Prehydrolysis of the FS was carried out with hydrochloric acid at room temperature 
down to the mass loss of 10 %. The catalytic (CuO slurry) oxidation was carried out 
in a stainless steel autoclave (volume 1 l, diameter of the reactor and magnetic stirrer 
94 and 60 mm respectively) at 160 °C and a partial oxygen pressure of 0.2 MPa. 

The obtained dependences of oxygen consumption on time during the oxidation 
of the initial non-hydrolyzed FS have a stepwise and unreproducible character. 
These problems are more pronounced under the lower mass transfer rates in the 
system.  

The results obtained indicate three types of diffusion limitation of the process of 
oxygen consumption by the components of the liquid phase. The first barrier locates 
at the gas-liquid interface in the form of gastight films of flax mucilage and 
determines the stepwise nature of the oxygen consumption curves. This type of 
braking is mainly overcome by the FS and flax mucilage prehydrolysis. The second 
type of diffusion limitation is caused by the viscosity of the liquid phase volume. The 
third type of diffusion limitation appears at large loads of the reaction mass and is 
associated with the non-Newtonian nature of suspended reaction mass at low mass 
transfer rate of volumes located far from the stirrer. 

Oxygen consumption became more reproducible after FS prehydrolyses, and the 
rate and amount of consumed oxygen increases. Prehydrolysis of flax shives also led 
to an increase in the yield of vanillin during the oxidation (by 20-40 %). The rate of 
oxygen consumption increases with increasing the stirrer speed (Fig. 1A) and does 
not depend on the volume of the reaction mass in the range of 200-350 ml. All the 
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OBTAINING BIO-AVIATION KEROSENE BY 
HYDRODEOXYGENATION OF COCONUT OIL 

Zolotareva M.S., Lugansky A.I., Kozlovsky R.A., Voronov M.S.,  
Shtepa O.I., Petrov I.A. 

Mendeleev University of Chemical Technology of Russia, Moscow, Russian 
Federation, marinazolotarevaa@gmail.com 

Currently, hydrodeoxygenation of vegetable oils and animal fats is one of the 

most popular areas for processing renewable raw materials to produce fuel fractions, 

such as bio-aviation kerosene and "green" diesel. This process allows you to get 

environmentally friendly fuels that are identical in characteristics to oil. The resulting 

hydrodeoxygenation products can be used both in pure form and in a mixture with 

petroleum products [1,2]. 

Production of biofuels in the industry takes place in several stages. The first of 

them is hydrolysis of vegetable oil or animal fat. This reaction is the hydrolysis of 

triglycerides to produce glycerol and fatty acids. The second stage is 

hydrodeoxygenation of the obtained fatty acids to form a mixture of C8-C18 

hydrocarbons [3,4].  

The purpose of this work is to study the process of hydrodeoxygenation of 

coconut oil using a Pd/Cact catalyst in the presence of hydrogen. The result is a 

hydrocarbon fraction that corresponds to the hydrocarbon composition of the 

kerosene fraction. The process consisted of two stages: hydrolysis of vegetable oils 

with the release of a fraction of fatty acids; hydrodeoxygenation of the resulting fatty 

acids to produce hydrocarbons corresponding in composition to bio-aviation 

kerosene. 

The hydrolysis reaction was carried out in a mixing reactor at a pressure of 20-

30 atm and a temperature of 200-250 °C in the presence of fatty acids for 2-4 hours 

at a mass ratio of coconut oil : water = 1 : 1 - 20. As a result, the conversion rate of 

triglycerides is complete, and the yield of fatty acids is 55-80%. 

Next, the process of hydrodeoxygenation of the obtained fatty acids is 

investigated. The reaction of deoxygenation derived fatty acids is carried out in a 

mixing reactor at a pressure of 12 ATM and a temperature of 300-350 °C in the 

presence of a catalyst Pd/Cact in the amount of 2-4 % by weight of the total weight of 

the reactants, the mass ratio of fatty acid : tsetan = 3 : 7, for 3-6 h. the catalyst is 
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activated in flowing hydrogen for 1 hour at 300 °C. As a result, the degree of 

conversion of fatty acid 30-33 %, while the output fraction biokerosene is 42 %. 

Further research is aimed at finding catalytic systems of the hydrodeoxygenation 

stage that allow increasing the yield of the kerosene fraction, as well as eliminating 

expensive catalysts based on precious metals. 
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